找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Decomposition Methods in Science and Engineering XXVI; Susanne C. Brenner,Eric Chung,Jun Zou Conference proceedings 2022 The Editor

[復(fù)制鏈接]
查看: 16736|回復(fù): 57
樓主
發(fā)表于 2025-3-21 19:09:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Domain Decomposition Methods in Science and Engineering XXVI
編輯Susanne C. Brenner,Eric Chung,Jun Zou
視頻videohttp://file.papertrans.cn/283/282502/282502.mp4
叢書名稱Lecture Notes in Computational Science and Engineering
圖書封面Titlebook: Domain Decomposition Methods in Science and Engineering XXVI;  Susanne C. Brenner,Eric Chung,Jun Zou Conference proceedings 2022 The Editor
描述.These are the proceedings of the 26th International Conference on Domain Decomposition Methods in Science and Engineering, which was hosted by the Chinese University of Hong Kong and held online in December 2020..Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems..The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2020..
出版日期Conference proceedings 2022
關(guān)鍵詞Domain decomposition methods; Iterative methods; Numerical methods for PDEs; Parallel computing; Large l
版次1
doihttps://doi.org/10.1007/978-3-030-95025-5
isbn_softcover978-3-030-95027-9
isbn_ebook978-3-030-95025-5Series ISSN 1439-7358 Series E-ISSN 2197-7100
issn_series 1439-7358
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Domain Decomposition Methods in Science and Engineering XXVI影響因子(影響力)




書目名稱Domain Decomposition Methods in Science and Engineering XXVI影響因子(影響力)學(xué)科排名




書目名稱Domain Decomposition Methods in Science and Engineering XXVI網(wǎng)絡(luò)公開度




書目名稱Domain Decomposition Methods in Science and Engineering XXVI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Domain Decomposition Methods in Science and Engineering XXVI被引頻次




書目名稱Domain Decomposition Methods in Science and Engineering XXVI被引頻次學(xué)科排名




書目名稱Domain Decomposition Methods in Science and Engineering XXVI年度引用




書目名稱Domain Decomposition Methods in Science and Engineering XXVI年度引用學(xué)科排名




書目名稱Domain Decomposition Methods in Science and Engineering XXVI讀者反饋




書目名稱Domain Decomposition Methods in Science and Engineering XXVI讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:28 | 只看該作者
https://doi.org/10.1007/978-3-319-16301-7e, the mesh must be kept fine enough in order to prevent numerical dispersion ‘polluting’ the solution [4]. This leads to very large linear systems, further amplifying the need to develop economical solver methodologies.
板凳
發(fā)表于 2025-3-22 02:17:22 | 只看該作者
1439-7358 by the Chinese University of Hong Kong and held online in December 2020..Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These
地板
發(fā)表于 2025-3-22 07:49:37 | 只看該作者
https://doi.org/10.1007/978-3-319-15320-9tational load. Our space-time domain decomposition method addresses this difficulty by allowing different time scales for different spatial subdomains of the system, thus distributing computing resources according to load requirements.
5#
發(fā)表于 2025-3-22 11:32:39 | 只看該作者
Conference proceedings 2022inese University of Hong Kong and held online in December 2020..Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods ar
6#
發(fā)表于 2025-3-22 13:43:07 | 只看該作者
Inexact Subdomain Solves Using Deflated GMRES for Helmholtz Problemse, the mesh must be kept fine enough in order to prevent numerical dispersion ‘polluting’ the solution [4]. This leads to very large linear systems, further amplifying the need to develop economical solver methodologies.
7#
發(fā)表于 2025-3-22 18:11:33 | 只看該作者
Conference proceedings 2022e specifically designed to make effective use of massively parallel, high-performance computing systems..The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2020..
8#
發(fā)表于 2025-3-22 21:39:43 | 只看該作者
9#
發(fā)表于 2025-3-23 05:02:23 | 只看該作者
Regulation and Housing Prices in Manhattand to highly heterogeneous positive definite elliptic problems. This coarse space relies on the solution of local eigenvalue problems on subdomains and the theory in the SPD case is based on the fact that local eigenfunctions form an orthonormal basis with respect to the energy scalar product induced by the bilinear form.
10#
發(fā)表于 2025-3-23 06:05:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉源县| 卢龙县| 胶南市| 邳州市| 济源市| 宣恩县| 喀什市| 万源市| 四平市| 米脂县| 宁海县| 九台市| 林西县| 聂拉木县| 花垣县| 常山县| 喀喇| 闽侯县| 恭城| 壤塘县| 丹东市| 夏河县| 上犹县| 静宁县| 通州区| 宁远县| 延边| 贡山| 望奎县| 古蔺县| 马龙县| 酒泉市| 峨眉山市| 东城区| 平顺县| 凉城县| 房山区| 府谷县| 雷州市| 琼中| 台中县|