找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Decomposition Methods in Science and Engineering XXI; Jocelyne Erhel,Martin J. Gander,Olof Widlund Conference proceedings 2014 Spri

[復制鏈接]
樓主: Coarse
31#
發(fā)表于 2025-3-26 21:41:44 | 只看該作者
Generating Equidistributed Meshes in 2D via Domain Decompositionimized Schwarz domain decomposition methods to solve the resulting system of nonlinear equations. The implementation of these iterations are discussed, and we conclude with numerical examples to illustrate the performance of the approach.
32#
發(fā)表于 2025-3-27 03:11:55 | 只看該作者
33#
發(fā)表于 2025-3-27 08:20:52 | 只看該作者
Goldener Schnitt und Phyllotaxisem, this algorithm is in turn coupled with a Newton algorithm. A thorough comparison of the efficiency of different coupling strategies is performed and numerical experiments are presented. These are extracted from F. H?berlein’s Ph.D. thesis
34#
發(fā)表于 2025-3-27 09:29:35 | 只看該作者
35#
發(fā)表于 2025-3-27 17:01:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:29:44 | 只看該作者
Neumann–Neumann Waveform Relaxation for the Time-Dependent Heat Equation, we show for the heat equation that when we consider finite time intervals, the Neumann–Neumann method converges superlinearly in one spatial dimension. A linear estimate for long time intervals is also derived, and we state further results that are valid for many subdomains and for higher dimensions.
37#
發(fā)表于 2025-3-27 23:06:07 | 只看該作者
Conference proceedings 2014held in Rennes, France, June 25-29, 2012. Domain decomposition is an active and interdisciplinary research discipline, focusing on the development, analysis and implementation of numerical methods for massively parallel computers. Domain decomposition methods are among the most efficient solvers for
38#
發(fā)表于 2025-3-28 05:51:18 | 只看該作者
39#
發(fā)表于 2025-3-28 09:23:38 | 只看該作者
40#
發(fā)表于 2025-3-28 10:27:07 | 只看該作者
Lecture Notes in Computational Science and Engineeringhttp://image.papertrans.cn/e/image/282497.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
库伦旗| 本溪市| 霞浦县| 家居| 莱西市| 大渡口区| 邢台市| 镶黄旗| 互助| 新邵县| 庆云县| 德化县| 深州市| 改则县| 化州市| 保德县| 富民县| 阳曲县| 临颍县| 张掖市| 滁州市| 城口县| 清涧县| 磴口县| 阜阳市| 东明县| 水城县| 甘泉县| 南开区| 化德县| 康保县| 周宁县| 峡江县| 鹤峰县| 琼海市| 大新县| 枞阳县| 林口县| 霍邱县| 囊谦县| 吴忠市|