找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Decomposition Methods in Science and Engineering XXI; Jocelyne Erhel,Martin J. Gander,Olof Widlund Conference proceedings 2014 Spri

[復(fù)制鏈接]
樓主: Coarse
31#
發(fā)表于 2025-3-26 21:41:44 | 只看該作者
Generating Equidistributed Meshes in 2D via Domain Decompositionimized Schwarz domain decomposition methods to solve the resulting system of nonlinear equations. The implementation of these iterations are discussed, and we conclude with numerical examples to illustrate the performance of the approach.
32#
發(fā)表于 2025-3-27 03:11:55 | 只看該作者
33#
發(fā)表于 2025-3-27 08:20:52 | 只看該作者
Goldener Schnitt und Phyllotaxisem, this algorithm is in turn coupled with a Newton algorithm. A thorough comparison of the efficiency of different coupling strategies is performed and numerical experiments are presented. These are extracted from F. H?berlein’s Ph.D. thesis
34#
發(fā)表于 2025-3-27 09:29:35 | 只看該作者
35#
發(fā)表于 2025-3-27 17:01:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:29:44 | 只看該作者
Neumann–Neumann Waveform Relaxation for the Time-Dependent Heat Equation, we show for the heat equation that when we consider finite time intervals, the Neumann–Neumann method converges superlinearly in one spatial dimension. A linear estimate for long time intervals is also derived, and we state further results that are valid for many subdomains and for higher dimensions.
37#
發(fā)表于 2025-3-27 23:06:07 | 只看該作者
Conference proceedings 2014held in Rennes, France, June 25-29, 2012. Domain decomposition is an active and interdisciplinary research discipline, focusing on the development, analysis and implementation of numerical methods for massively parallel computers. Domain decomposition methods are among the most efficient solvers for
38#
發(fā)表于 2025-3-28 05:51:18 | 只看該作者
39#
發(fā)表于 2025-3-28 09:23:38 | 只看該作者
40#
發(fā)表于 2025-3-28 10:27:07 | 只看該作者
Lecture Notes in Computational Science and Engineeringhttp://image.papertrans.cn/e/image/282497.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 青铜峡市| 武鸣县| 体育| 静海县| 彩票| 南城县| 武宁县| 镇巴县| 永新县| 通州区| 嘉祥县| 桂林市| 乐亭县| 鄂托克旗| 普安县| 阳城县| 樟树市| 安康市| 大连市| 白山市| 山东省| 渝中区| 宜兰县| 承德县| 尚志市| 安陆市| 拉孜县| 灵台县| 新竹县| 班玛县| 塔城市| 青川县| 新丰县| 新宁县| 潢川县| 淄博市| 依兰县| 芦山县| 沂水县| 高密市|