找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation in Computer Vision Applications; Gabriela Csurka Book 2017 Springer International Publishing AG 2017 Computer Vision.Vis

[復(fù)制鏈接]
樓主: 歸納
41#
發(fā)表于 2025-3-28 15:03:16 | 只看該作者
42#
發(fā)表于 2025-3-28 20:53:25 | 只看該作者
43#
發(fā)表于 2025-3-29 00:21:33 | 只看該作者
https://doi.org/10.1007/978-3-031-34398-8rning and DA techniques, and we study their generalization properties to parts from unseen classes when they are learned from a limited number of domains and example images. One of our conclusions is that, for a majority of the domains, part annotations transfer well, and that, performance of the se
44#
發(fā)表于 2025-3-29 03:12:43 | 只看該作者
Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation hand, we propose . of a kernel that discriminatively combines multiple base GFKs to model the source and the target domains at fine-grained granularities. In particular, each base kernel pivots on a different set of landmarks—the most useful data instances that reveal the similarity between the sou
45#
發(fā)表于 2025-3-29 08:41:59 | 只看該作者
46#
發(fā)表于 2025-3-29 12:31:13 | 只看該作者
Correlation Alignment for Unsupervised Domain Adaptationl but the number and dimensionality of target examples are very high. The resulting CORAL Linear Discriminant Analysis (CORAL-LDA)outperforms LDA by a large margin on standard domain adaptation benchmarks. Finally, we extend CORAL to learn a nonlinear transformation that aligns correlations of layer
47#
發(fā)表于 2025-3-29 16:37:46 | 只看該作者
48#
發(fā)表于 2025-3-29 23:31:45 | 只看該作者
49#
發(fā)表于 2025-3-30 00:12:55 | 只看該作者
50#
發(fā)表于 2025-3-30 07:55:58 | 只看該作者
Generalizing Semantic Part Detectors Across Domainsrning and DA techniques, and we study their generalization properties to parts from unseen classes when they are learned from a limited number of domains and example images. One of our conclusions is that, for a majority of the domains, part annotations transfer well, and that, performance of the se
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垣曲县| 黄骅市| 忻州市| 方正县| 丰原市| 冀州市| 永靖县| 比如县| 宜宾市| 天台县| 江阴市| 房山区| 江达县| 法库县| 镇康县| 涟源市| 襄垣县| 德江县| 沁源县| 鸡西市| 乃东县| 邮箱| 洞头县| 通渭县| 淮南市| 西昌市| 景泰县| 太仓市| 大邑县| 巧家县| 澄城县| 内丘县| 淮北市| 长丰县| 徐州市| 姜堰市| 新泰市| 成武县| 鹤壁市| 古田县| 京山县|