找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation for Visual Understanding; Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada

[復(fù)制鏈接]
查看: 47162|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:46:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Domain Adaptation for Visual Understanding
編輯Richa Singh,Mayank Vatsa,Nalini Ratha
視頻videohttp://file.papertrans.cn/283/282485/282485.mp4
概述Presents the latest research on domain adaptation for visual understanding.Provides perspectives from an international selection of authorities in the field.Reviews a variety of applications and techn
圖書封面Titlebook: Domain Adaptation for Visual Understanding;  Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada
描述.This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition..Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o
出版日期Book 2020
關(guān)鍵詞Domain Adaptation; Machine Learning; Computer Vision; Representation Learning; Transfer Learning; Generat
版次1
doihttps://doi.org/10.1007/978-3-030-30671-7
isbn_softcover978-3-030-30673-1
isbn_ebook978-3-030-30671-7
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Domain Adaptation for Visual Understanding影響因子(影響力)




書目名稱Domain Adaptation for Visual Understanding影響因子(影響力)學(xué)科排名




書目名稱Domain Adaptation for Visual Understanding網(wǎng)絡(luò)公開度




書目名稱Domain Adaptation for Visual Understanding網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Domain Adaptation for Visual Understanding被引頻次




書目名稱Domain Adaptation for Visual Understanding被引頻次學(xué)科排名




書目名稱Domain Adaptation for Visual Understanding年度引用




書目名稱Domain Adaptation for Visual Understanding年度引用學(xué)科排名




書目名稱Domain Adaptation for Visual Understanding讀者反饋




書目名稱Domain Adaptation for Visual Understanding讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:09:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:04:39 | 只看該作者
Book 2020cy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o
地板
發(fā)表于 2025-3-22 06:21:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:28:17 | 只看該作者
Multi-modal Conditional Feature Enhancement for Facial Action Unit Recognition,erformance. We apply our fusion method to the task of facial action unit?(AU) recognition by learning to enhance the thermal and visible feature representations. We compare our approach to other recent fusion schemes and demonstrate its effectiveness on the MMSE dataset by outperforming previous tec
6#
發(fā)表于 2025-3-22 14:47:51 | 只看該作者
sa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o978-3-030-30673-1978-3-030-30671-7
7#
發(fā)表于 2025-3-22 19:49:36 | 只看該作者
8#
發(fā)表于 2025-3-22 23:01:00 | 只看該作者
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning,fy an unlabeled “target” dataset by leveraging a labeled “source” dataset that comes from a slightly similar distribution. We propose metric-based adversarial discriminative domain adaptation?(M-ADDA) which performs two main steps. First, it uses a metric learning approach to train the source model
9#
發(fā)表于 2025-3-23 02:40:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉善县| 全椒县| 安福县| 咸阳市| 淄博市| 林周县| 衡东县| 岢岚县| 高陵县| 将乐县| 金堂县| 昔阳县| 泸溪县| 农安县| 贵港市| 禄丰县| 上饶县| 铜梁县| 玉龙| 临泉县| 伊春市| 响水县| 泗水县| 岳阳县| 分宜县| 林口县| 通榆县| 宁都县| 北京市| 凌海市| 吉林省| 同仁县| 华蓥市| 丁青县| 千阳县| 肇州县| 桐柏县| 霍林郭勒市| 满洲里市| 循化| 晋宁县|