找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T

[復(fù)制鏈接]
查看: 42304|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:09:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops
副標(biāo)題San José, CA, USA, A
編輯Mickael Coustaty,Alicia Fornés
視頻videohttp://file.papertrans.cn/283/282317/282317.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T
描述.This two-volume set LNCS 14193-14194 constitutes the proceedings of International Workshops co-located with the 17th International Conference on Document Analysis and Recognition, ICDAR 2023, held in San José, CA, USA, during August 21–26, 2023...The total of 43 regular papers presented in this book were carefully selected from 60 submissions.?..Part I contains 22 regular papers that stem from the following workshops:..ICDAR 2023 Workshop on Computational Paleography (IWCP);..ICDAR 2023 Workshop on Camera-Based Document Analysis and Recognition (CBDAR); ..ICDAR 2023 International Workshop on Graphics Recognition (GREC); ..ICDAR 2023 Workshop on Automatically Domain-Adapted and Personalized Document Analysis (ADAPDA);..Part II contains 21 regular papers that stem from the following workshops:.ICDAR 2023 Workshop on Machine Vision and NLP for Document Analysis (VINALDO);..ICDAR 2023 International Workshop on MachineLearning (WML)...?.
出版日期Conference proceedings 2023
關(guān)鍵詞Document Image Analysis and Recognition; Natural Language Processing; Computational Paleography; Digita
版次1
doihttps://doi.org/10.1007/978-3-031-41501-2
isbn_softcover978-3-031-41500-5
isbn_ebook978-3-031-41501-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops影響因子(影響力)




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops影響因子(影響力)學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops網(wǎng)絡(luò)公開度




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops被引頻次




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops被引頻次學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops年度引用




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops年度引用學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops讀者反饋




書目名稱Document Analysis and Recognition – ICDAR 2023 Workshops讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:56 | 只看該作者
Leveraging Knowledge Graph Embeddings to?Enhance Contextual Representations for?Relation Extractionpresentation. We conducted a series of experiments which revealed promising and very interesting results for our proposed approach. The obtained results demonstrated an outperformance of our method compared to context-based relation extraction models.
板凳
發(fā)表于 2025-3-22 01:06:38 | 只看該作者
Extracting Key-Value Pairs in?Business Documentstraction in business documents. Our approach is designed to be adaptable and requires minimal semantic and language-specific knowledge, making it suitable for a wide range of business documents. This flexibility allows our method to be easily applied to real-world scenarios, where documents may vary
地板
發(fā)表于 2025-3-22 04:36:00 | 只看該作者
5#
發(fā)表于 2025-3-22 10:07:51 | 只看該作者
Subgraph-Induced Extraction Technique for?Information (SETI) from?Administrative Documentsraph level and compare the results with baselines on private as well as public datasets. Our model succeeds in improving recall and precision scores for some classes in our private dataset and produces comparable results for public datasets designed for Form Understanding and Information Extraction.
6#
發(fā)表于 2025-3-22 14:46:21 | 只看該作者
7#
發(fā)表于 2025-3-22 17:48:19 | 只看該作者
8#
發(fā)表于 2025-3-22 22:44:39 | 只看該作者
A Comparison of Demographic Attributes Detection from Handwriting Based on Traditional and Deep Learct the demographical attributes of writers. In the deep learning method, a Convolutional Neural Network model based on the ResNet architecture with a fully connected layer, followed by a softmax layer is used to provide probability scores to facilitate demographic information detection. To evaluate
9#
發(fā)表于 2025-3-23 02:45:20 | 只看該作者
10#
發(fā)表于 2025-3-23 08:13:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 05:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西昌市| 犍为县| 嘉禾县| 普兰店市| 康定县| 常宁市| 新绛县| 镇远县| 阳江市| 阿拉善盟| 浦北县| 黄大仙区| 红桥区| 吉林省| 剑川县| 韩城市| 金山区| 攀枝花市| 溧水县| 巴楚县| 玉山县| 长垣县| 忻州市| 来安县| 三台县| 桦川县| 南城县| 海安县| 高密市| 乡城县| 双峰县| 高平市| 古浪县| 洮南市| 合山市| 上蔡县| 延长县| 贵州省| 阿合奇县| 兴安县| 莱州市|