找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021 Workshops; Lausanne, Switzerlan Elisa H. Barney Smith,Umapada Pal Conference proceedings 202

[復(fù)制鏈接]
樓主: Heel-Spur
31#
發(fā)表于 2025-3-26 21:26:32 | 只看該作者
32#
發(fā)表于 2025-3-27 02:37:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:05 | 只看該作者
Famous Companies Use More Letters in Logo: A Large-Scale Analysis of Text Area in Logoude the weak positive correlation between the text area ratio and the number of followers of the company. In addition, deep regression and deep ranking methods can catch correlations between the logo images and the number of followers.
34#
發(fā)表于 2025-3-27 10:36:01 | 只看該作者
Accurate Graphic Symbol Detection in?Ancient Document Digital Reproductionsighting potential symbols to be validated and enriched by the experts, whose decisions are used to improve the detection performance. This paper shows how this task can benefit from feature auto-encoding, showing how detection performance improves with respect to trivial template matching.
35#
發(fā)表于 2025-3-27 15:40:26 | 只看該作者
Antichrist Obama and the Doomsday Preppers and testing, with fewer windows used in testing, and (3) merging with non-maximal suppression (NMS) in windows and pages has been replaced by merging overlapping detections using XY-cutting at the page level. Our fastest model processes 3 pages per second on a Linux system with a GTX 1080Ti GPU, Intel i7-7700K CPU, and 32 GB of RAM.
36#
發(fā)表于 2025-3-27 20:31:07 | 只看該作者
37#
發(fā)表于 2025-3-28 01:38:03 | 只看該作者
Conference proceedings 2021ition, ICDAR 2021, held in Lausanne, Switzerland, in September 2021.The total of 59 full and 12 short papers presented in this book were carefully selected from 96 contributions?and divided into two volumes. Part I contains 29 full and 4 short papers that stem from the following meetings: ICDAR 2021
38#
發(fā)表于 2025-3-28 05:50:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:40:54 | 只看該作者
40#
發(fā)表于 2025-3-28 12:50:12 | 只看該作者
Graph-Based Object Detection Enhancement for Symbolic Engineering Drawingsa graph representation of the extracted circuit components. The graph structure is then analysed using graph convolutional neural networks and node degree comparison to identify graph anomalies potentially resulting from false negatives from the object recognition module. Anomaly predictions are the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 14:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辰溪县| 中阳县| 托克逊县| 东宁县| 大厂| 蕉岭县| 获嘉县| 黔南| 吉安市| 措勤县| 宜章县| 达州市| 康保县| 石台县| 天全县| 金塔县| 洪洞县| 钟祥市| 武威市| 长兴县| 西平县| 察隅县| 台南市| 门源| 乌海市| 崇明县| 清流县| 舞钢市| 大新县| 济源市| 洪湖市| 三门峡市| 宜州市| 巴中市| 罗定市| 阳春市| 类乌齐县| 兴海县| 丽江市| 大方县| 华坪县|