找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021 Workshops; Lausanne, Switzerlan Elisa H. Barney Smith,Umapada Pal Conference proceedings 202

[復(fù)制鏈接]
樓主: Heel-Spur
31#
發(fā)表于 2025-3-26 21:26:32 | 只看該作者
32#
發(fā)表于 2025-3-27 02:37:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:05 | 只看該作者
Famous Companies Use More Letters in Logo: A Large-Scale Analysis of Text Area in Logoude the weak positive correlation between the text area ratio and the number of followers of the company. In addition, deep regression and deep ranking methods can catch correlations between the logo images and the number of followers.
34#
發(fā)表于 2025-3-27 10:36:01 | 只看該作者
Accurate Graphic Symbol Detection in?Ancient Document Digital Reproductionsighting potential symbols to be validated and enriched by the experts, whose decisions are used to improve the detection performance. This paper shows how this task can benefit from feature auto-encoding, showing how detection performance improves with respect to trivial template matching.
35#
發(fā)表于 2025-3-27 15:40:26 | 只看該作者
Antichrist Obama and the Doomsday Preppers and testing, with fewer windows used in testing, and (3) merging with non-maximal suppression (NMS) in windows and pages has been replaced by merging overlapping detections using XY-cutting at the page level. Our fastest model processes 3 pages per second on a Linux system with a GTX 1080Ti GPU, Intel i7-7700K CPU, and 32 GB of RAM.
36#
發(fā)表于 2025-3-27 20:31:07 | 只看該作者
37#
發(fā)表于 2025-3-28 01:38:03 | 只看該作者
Conference proceedings 2021ition, ICDAR 2021, held in Lausanne, Switzerland, in September 2021.The total of 59 full and 12 short papers presented in this book were carefully selected from 96 contributions?and divided into two volumes. Part I contains 29 full and 4 short papers that stem from the following meetings: ICDAR 2021
38#
發(fā)表于 2025-3-28 05:50:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:40:54 | 只看該作者
40#
發(fā)表于 2025-3-28 12:50:12 | 只看該作者
Graph-Based Object Detection Enhancement for Symbolic Engineering Drawingsa graph representation of the extracted circuit components. The graph structure is then analysed using graph convolutional neural networks and node degree comparison to identify graph anomalies potentially resulting from false negatives from the object recognition module. Anomaly predictions are the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵寿县| 习水县| 武定县| 濮阳市| 湖北省| 奉新县| 武邑县| 安福县| 台南市| 永昌县| 安国市| 正镶白旗| 浦江县| 武宁县| 微山县| 德昌县| 加查县| 阿图什市| 梁河县| 仁布县| 黑山县| 承德县| 宜州市| 民县| 达拉特旗| 马公市| 深圳市| 宿迁市| 富蕴县| 洛阳市| 和政县| 建始县| 喀喇沁旗| 隆回县| 西藏| 休宁县| 荔浦县| 廉江市| 秭归县| 永胜县| 青铜峡市|