找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2023; 17th International C Gernot A. Fink,Rajiv Jain,Richard Zanibbi Conference proceedings 2023

[復(fù)制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 10:17:32 | 只看該作者
Pharmaceutical Industry Performanceon, spelling correction, and beautification. Writing is personal and usually the processing is done on-device. Ink generative models thus need to produce high quality content quickly, in a resource constrained environment..In this work, we study ways to maximize the quality of the output of a traine
12#
發(fā)表于 2025-3-23 17:22:25 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:48 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:19 | 只看該作者
Translating Samuel Beckett into Hindicognizes the characters one after the other through an attention-based prediction process until reaching the end of the document. However, this autoregressive process leads to inference that cannot benefit from any parallelization optimization. In this paper, we propose Faster DAN, a two-step strate
15#
發(fā)表于 2025-3-24 02:25:52 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:37 | 只看該作者
Case Study I: Key Concepts and Approachy used models for this task fail to generalize to long-form data and how this problem can be solved by augmenting the training data, changing the model architecture and the inference procedure. These methods use contrastive learning technique and are tailored specifically for the handwriting domain.
17#
發(fā)表于 2025-3-24 11:06:59 | 只看該作者
18#
發(fā)表于 2025-3-24 16:59:14 | 只看該作者
https://doi.org/10.1007/978-3-030-52527-9 area of HTR that has garnered particular interest is the transcription of historical documents, as there is a vast amount of records available that have yet to be processed, potentially resulting in a loss of information due to deterioration..Currently, the most widely used HTR approach is to train
19#
發(fā)表于 2025-3-24 22:22:02 | 只看該作者
Critical Approaches to Children‘s Literatureethods can be used to adapt a general model to the target dataset. We show that in the case of neural networks trained for handwriting recognition using CTC, simple fine-tuning with data augmentation works surprisingly well in such scenarios and that it is resistant to overfitting even for very smal
20#
發(fā)表于 2025-3-25 01:47:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泌阳县| 海晏县| 彩票| 长顺县| 濮阳市| 拉孜县| 纳雍县| 海口市| 嘉善县| 凤凰县| 铜梁县| 禹城市| 天长市| 鞍山市| 旬邑县| 大余县| 樟树市| 保亭| 渝北区| 桐乡市| 远安县| 惠安县| 临澧县| 收藏| 丰城市| 巴中市| 深泽县| 临清市| 定西市| 固阳县| 广东省| 远安县| 天门市| 沈丘县| 迁安市| 石家庄市| 遂溪县| 康定县| 高州市| 南充市| 洛浦县|