找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis Systems; 14th IAPR Internatio Xiang Bai,Dimosthenis Karatzas,Daniel Lopresti Conference proceedings 2020 Springer Nature

[復(fù)制鏈接]
樓主: Sediment
51#
發(fā)表于 2025-3-30 08:26:24 | 只看該作者
52#
發(fā)表于 2025-3-30 15:31:05 | 只看該作者
Shinichi Ichimura,Tsuneaki Satoical character recognition (OCR) performance prior to any actual recognition, but also provides immediate feedback on whether the documents meet the quality requirements for other high level document processing and analysis tasks. In this work, we present a deep neural network (DNN) to accomplish th
53#
發(fā)表于 2025-3-30 20:18:15 | 只看該作者
Arie Kuyvenhoven,Olga Memedovic,Nico Windts work we focus on decorated background removal and the extraction of textual components from French university diploma. As far as we know, this is the very first attempt to resolve this kind of problem on French university diploma images. Hence, we make our dataset public for further research, rela
54#
發(fā)表于 2025-3-30 21:24:42 | 只看該作者
Transition in Central and Eastern Europeon is a key step in table understanding. Nowadays, the most successful methods for table detection in document images employ deep learning algorithms; and, particularly, a technique known as .. In this context, such a technique exports the knowledge acquired to detect objects in natural images to de
55#
發(fā)表于 2025-3-31 03:00:30 | 只看該作者
Arie Kuyvenhoven,Olga Memedovic,Nico Windtmanually annotating the bounding boxes of graphical or page objects in publicly available annual reports. This dataset contains a total of 13. annotated page images with objects in five different popular categories—table, figure, natural image, logo, and signature. It is the largest manually annotat
56#
發(fā)表于 2025-3-31 08:43:29 | 只看該作者
57#
發(fā)表于 2025-3-31 12:27:24 | 只看該作者
Maximum Entropy Regularization and Chinese Text Recognitionlasses, which causes a serious overfitting problem. We propose to apply Maximum Entropy Regularization to regularize the training process, which is to simply add a negative entropy term to the canonical cross-entropy loss without any additional parameters and modification of a model. We theoreticall
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 00:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临洮县| 涞水县| 连山| 广灵县| 青阳县| 渑池县| 绿春县| 兴安盟| 若羌县| 乐业县| 南雄市| 武邑县| 井冈山市| 南城县| 萨迦县| 响水县| 师宗县| 南昌市| 温泉县| 栖霞市| 县级市| 汕尾市| 英吉沙县| 南昌县| 泗水县| 西充县| 青龙| 哈尔滨市| 泰兴市| 文登市| 海盐县| 双峰县| 宽城| 富平县| 泾源县| 博湖县| 昭觉县| 临沂市| 界首市| 全州县| 民丰县|