找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributions, Partial Differential Equations, and Harmonic Analysis; Dorina Mitrea Textbook 20131st edition Springer Science+Business Med

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:06:45 | 只看該作者
More on Fundamental Solutions for Systems,nstant coefficient second order systems in the upper-half space, and the relevance of these operators vis-a-vis to the solvability of boundary value problems for such systems in this setting, are discussed.
12#
發(fā)表于 2025-3-23 15:24:51 | 只看該作者
Weak Derivatives,ced as a mean of extending the notion of solution to a more general setting, where the functions involved may lack standard pointwise differentiability properties. Here two classes of test functions are also defined and discussed.
13#
發(fā)表于 2025-3-23 19:23:37 | 只看該作者
14#
發(fā)表于 2025-3-23 22:30:07 | 只看該作者
The Space of Tempered Distributions,s are introduced and studied, including homogeneous and principal value distributions. Significant applications to harmonic analysis and partial differential equations are singled out. For example, a general, higher-dimensional jump-formula is deduced in this chapter for a certain class of tempered
15#
發(fā)表于 2025-3-24 03:31:59 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:30 | 只看該作者
The Laplacian and Related Operators,er. While the natural starting point is the Laplacian, this study encompasses a variety of related operators, such as the bi-Laplacian, the poly-harmonic operator, the Cauchy-Riemann operator, the Dirac operator, as well as general second order constant coefficient strongly elliptic operators. Havin
17#
發(fā)表于 2025-3-24 11:11:38 | 只看該作者
More on Fundamental Solutions for Systems,cases of the approach developed, fundamental solutions that are tempered distributions for the Lamé and Stokes operators are derived. The fact that integral representation formulas and interior estimates hold for null-solutions of homogeneous systems with non-vanishing full symbol is also proved. As
18#
發(fā)表于 2025-3-24 16:41:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:21:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静安区| 石柱| 醴陵市| 临城县| 东乌珠穆沁旗| 西安市| 长子县| 康乐县| 华池县| 崇州市| 白朗县| 齐齐哈尔市| 天水市| 南城县| 舞阳县| 贵州省| 泗洪县| 天等县| 称多县| 集安市| 镇雄县| 车致| 闽侯县| 马公市| 上高县| 合肥市| 永仁县| 三穗县| 兰西县| 罗山县| 马山县| 西和县| 邻水| 文登市| 金沙县| 浦县| 临沭县| 伊金霍洛旗| 越西县| 城口县| 萨迦县|