找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Optimization, Game and Learning Algorithms; Theory and Applicati Huiwei Wang,Huaqing Li,Bo Zhou Book 2021 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Clinical-Trial
31#
發(fā)表于 2025-3-26 21:40:44 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:42 | 只看該作者
Reinforcement Learning for PHEV Route Choice Based on Congestion Game,d based on the Nguyen–Dupuis network, the experimental results not only demonstrate the correctness of theoretical results, but also show that the B–M RL-based solution method outperforms several existing solution methods.
33#
發(fā)表于 2025-3-27 06:43:39 | 只看該作者
34#
發(fā)表于 2025-3-27 12:14:16 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:11 | 只看該作者
The Statesman‘s Year-Book, 1996-7ex functions over strongly connected and directed graphs. A novel distributed algorithm is proposed where both row and column-stochastic matrices are utilized to bypass the limits of the implementation of doubly-stochastic matrices or eigenvector estimation in related work. Besides, it has an eviden
37#
發(fā)表于 2025-3-27 23:31:20 | 只看該作者
The Statesman‘s Year-Book, 1996-7 of all local convex objective functions. Each agent in the network possesses only its private local convex objective function and is constrained to a coupling equality constraint and its local inequality constraint. Moreover, we particularly focus on the scenario where each agent is only allowed to
38#
發(fā)表于 2025-3-28 03:50:06 | 只看該作者
The Statesman‘s Year-Book, 1996-7eting total demands and complying with individual generator output constraints. This chapter proposes a distributed optimization algorithm with noisy gradient based on stochastic gradient-push approach to solve the EDP on time-varying directed communication networks potentially with time delays. It
39#
發(fā)表于 2025-3-28 09:54:09 | 只看該作者
40#
發(fā)表于 2025-3-28 11:25:38 | 只看該作者
The Statesman‘s Year-Book, 1996-7among individually strategic players with incomplete information. In this game, each player uses the learning automaton (LA) scheme to generate the action probability distribution based on his/her private information for maximizing own averaged utility. It is shown that if one of admissible mixed-st
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤岗市| 岑溪市| 赤水市| 赣榆县| 阿坝县| 桃园县| 陕西省| 汨罗市| 两当县| 静乐县| 类乌齐县| 嫩江县| 会昌县| 阳曲县| 桃园县| 壤塘县| 龙泉市| 探索| 曲水县| 梁山县| 镇原县| 祁阳县| 屏山县| 同江市| 太保市| 千阳县| 鱼台县| 苗栗县| 盐山县| 微山县| 深圳市| 拉孜县| 蒲城县| 平潭县| 巨野县| 长沙市| 西乌珠穆沁旗| 泸溪县| 边坝县| 安化县| 阳春市|