找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Machine Learning with PySpark; Migrating Effortless Abdelaziz Testas Book 2023 Abdelaziz Testas 2023 Python.Scalable machine le

[復制鏈接]
查看: 48972|回復: 61
樓主
發(fā)表于 2025-3-21 16:03:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Distributed Machine Learning with PySpark
副標題Migrating Effortless
編輯Abdelaziz Testas
視頻videohttp://file.papertrans.cn/282/281919/281919.mp4
概述Covers migrating from Pandas, Scikit-Learn to PySpark, from single-node to large-scale computing.Explains deploying ML models to production with Scikit-Learn and PySpark.Explains how to use PySpark fo
圖書封面Titlebook: Distributed Machine Learning with PySpark; Migrating Effortless Abdelaziz Testas Book 2023 Abdelaziz Testas 2023 Python.Scalable machine le
描述.Migrate from pandas and scikit-learn to PySpark to handle vast amounts of data and achieve faster data processing time. This book will show you how to make this transition by adapting your skills and leveraging the similarities in syntax, functionality, and interoperability between these tools...Distributed Machine Learning with PySpark. offers a roadmap to data scientists considering transitioning from small data libraries (pandas/scikit-learn) to big data processing and machine learning with PySpark. You will learn to translate Python code from pandas/scikit-learn to PySpark to preprocess large volumes of data and build, train, test, and evaluate popular machine learning algorithms such as linear and logistic regression, decision trees, random forests, support vector machines, Na?ve Bayes, and neural networks...After completing this book, you will understand the foundational concepts of data preparation and machine learning and will have the skills necessary toapply these methods using PySpark, the industry standard for building scalable ML data pipelines...What You Will Learn..Master the fundamentals of supervised learning, unsupervised learning, NLP, and recommender systems.Un
出版日期Book 2023
關(guān)鍵詞Python; Scalable machine learning; Large-Scale machine learning; Machine Learning; PySpark; Scikit-learn;
版次1
doihttps://doi.org/10.1007/978-1-4842-9751-3
isbn_softcover978-1-4842-9750-6
isbn_ebook978-1-4842-9751-3
copyrightAbdelaziz Testas 2023
The information of publication is updating

書目名稱Distributed Machine Learning with PySpark影響因子(影響力)




書目名稱Distributed Machine Learning with PySpark影響因子(影響力)學科排名




書目名稱Distributed Machine Learning with PySpark網(wǎng)絡(luò)公開度




書目名稱Distributed Machine Learning with PySpark網(wǎng)絡(luò)公開度學科排名




書目名稱Distributed Machine Learning with PySpark被引頻次




書目名稱Distributed Machine Learning with PySpark被引頻次學科排名




書目名稱Distributed Machine Learning with PySpark年度引用




書目名稱Distributed Machine Learning with PySpark年度引用學科排名




書目名稱Distributed Machine Learning with PySpark讀者反饋




書目名稱Distributed Machine Learning with PySpark讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:11:45 | 只看該作者
The British Commonwealth And Empireer, testing and optimizing all of these models in each category would be incredibly cumbersome and require significant computational power. To address this challenge, this chapter introduces k-fold cross-validation, a technique that helps select the best-performing model from a range of different al
地板
發(fā)表于 2025-3-22 06:43:33 | 只看該作者
5#
發(fā)表于 2025-3-22 12:45:04 | 只看該作者
The British Commonwealth And Empireion model using the decision tree algorithm—an alternative to the multiple linear regression model we used in the previous chapter. We will use both Scikit-Learn and PySpark to train and evaluate the model and then use it to predict the sale price of houses based on several features such as the size
6#
發(fā)表于 2025-3-22 14:39:32 | 只看該作者
https://doi.org/10.1057/9780230270770el using the same housing dataset we used for decision tree and random forest regression in the preceding chapters. This way, we can have a better idea about which tree type performs better by comparing their performance metrics.
7#
發(fā)表于 2025-3-22 19:50:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:13:58 | 只看該作者
https://doi.org/10.1057/9780230270770aluating a random forest classifier to classify the species of an Iris flower using the same dataset employed in the previous chapter. Previously, we emphasized that decision trees are powerful machine learning algorithms adept at classification tasks. Nonetheless, they can be susceptible to overfit
9#
發(fā)表于 2025-3-23 03:30:50 | 只看該作者
10#
發(fā)表于 2025-3-23 07:29:03 | 只看該作者
https://doi.org/10.1057/9780230270770chine learning technique widely recognized for its simplicity and ease of implementation in classification tasks. It is computationally efficient, making it suitable for large datasets and real-time applications. It can work well with relatively small datasets because it relies on simple probability
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南陵县| 喀什市| 长沙县| 贺州市| 青河县| 双峰县| 托克逊县| 句容市| 抚州市| 衡阳县| 县级市| 新沂市| 武冈市| 白水县| 新宾| 建昌县| 林周县| 白银市| 哈尔滨市| 福州市| 南昌县| 丰县| 岳普湖县| 田阳县| 桦甸市| 安泽县| 鲜城| 新竹县| 石城县| 陆良县| 兴山县| 吉林市| 全椒县| 岳普湖县| 平邑县| 临潭县| 尚义县| 梁平县| 香河县| 汝城县| 新密市|