找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Machine Learning and Gradient Optimization; Jiawei Jiang,Bin Cui,Ce Zhang Book 2022 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 14251|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:15:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Distributed Machine Learning and Gradient Optimization
編輯Jiawei Jiang,Bin Cui,Ce Zhang
視頻videohttp://file.papertrans.cn/282/281918/281918.mp4
概述Presents a comprehensive overview of distributed machine learning.Introduces the progress of gradient optimization for distributed machine learning.Addresses the key challenge of implementing machine
叢書名稱Big Data Management
圖書封面Titlebook: Distributed Machine Learning and Gradient Optimization;  Jiawei Jiang,Bin Cui,Ce Zhang Book 2022 The Editor(s) (if applicable) and The Auth
描述.This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol...Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management..
出版日期Book 2022
關(guān)鍵詞distributed machine learning; gradient optimization; parallelism; gradient compression; synchronization
版次1
doihttps://doi.org/10.1007/978-981-16-3420-8
isbn_softcover978-981-16-3422-2
isbn_ebook978-981-16-3420-8Series ISSN 2522-0179 Series E-ISSN 2522-0187
issn_series 2522-0179
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Distributed Machine Learning and Gradient Optimization影響因子(影響力)




書目名稱Distributed Machine Learning and Gradient Optimization影響因子(影響力)學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization網(wǎng)絡(luò)公開度




書目名稱Distributed Machine Learning and Gradient Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization被引頻次




書目名稱Distributed Machine Learning and Gradient Optimization被引頻次學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization年度引用




書目名稱Distributed Machine Learning and Gradient Optimization年度引用學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization讀者反饋




書目名稱Distributed Machine Learning and Gradient Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:08 | 只看該作者
Basics of Distributed Machine Learning,al techniques are involved in meeting the characteristics of distributed environments. In this chapter, we first conduct an anatomy of distributed machine learning, with which we understand the indispensable building blocks in designing distributed gradient optimization algorithms. Then, we provide
板凳
發(fā)表于 2025-3-22 04:21:58 | 只看該作者
地板
發(fā)表于 2025-3-22 05:14:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:19 | 只看該作者
Conclusion,t fit the model parameters over the training data. As the data volume becomes larger and larger, extending gradient optimization algorithms to distributed environments is indispensable. This book thereby studies gradient optimization in the setting of distributed machine learning.
6#
發(fā)表于 2025-3-22 14:42:51 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:32 | 只看該作者
8#
發(fā)表于 2025-3-22 22:23:04 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:40 | 只看該作者
Distributed Machine Learning Systems,t underlying infrastructures, e.g., new hardware (GPU/FPGA/RDMA), cloud environment, and databases. In this chapter, we will describe a broad range of machine learning systems in terms of motivations, architectures, functionalities, pros, and cons.
10#
發(fā)表于 2025-3-23 07:01:49 | 只看該作者
Book 2022ra, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Fo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固原市| 贺州市| 阿荣旗| 上杭县| 蓬安县| 亳州市| 嘉祥县| 巴塘县| 吉安县| 曲麻莱县| 喀喇沁旗| 洪湖市| 喀喇| 乐平市| 桐梓县| 庆阳市| 高邑县| 兴和县| 张家川| 太保市| 丰宁| 修水县| 陆川县| 平塘县| 蓬溪县| 迁西县| 庐江县| 巨野县| 巫溪县| 延安市| 普安县| 安西县| 三穗县| 嘉峪关市| 仁化县| 芒康县| 承德县| 凤台县| 屯昌县| 新沂市| 玛沁县|