找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Graph Analytics; Programming, Languag Unnikrishnan Cheramangalath,Rupesh Nasre,Y. N. Sri Book 2020 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 46121|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:44:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Distributed Graph Analytics
副標(biāo)題Programming, Languag
編輯Unnikrishnan Cheramangalath,Rupesh Nasre,Y. N. Sri
視頻videohttp://file.papertrans.cn/282/281899/281899.mp4
概述Presents the essentials of efficiently combining graph analysis algorithms and high performance computing.Describes several parallel algorithms used in distributed graph analytics in a high level nota
圖書(shū)封面Titlebook: Distributed Graph Analytics; Programming, Languag Unnikrishnan Cheramangalath,Rupesh Nasre,Y. N. Sri Book 2020 Springer Nature Switzerland
描述.This book brings together two important trends: graph algorithms and high-performance computing. Efficient and scalable execution of graph processing applications in data or network analysis requires innovations at multiple levels: algorithms, associated data structures, their implementation and tuning to a particular hardware. Further, programming languages and the associated compilers play a crucial role when it comes to automating efficient code generation for various architectures. This book discusses the essentials of all these aspects...The book is divided into three parts: programming, languages, and their compilation. The first part examines the manual parallelization of graph algorithms, revealing various parallelization patterns encountered, especially when dealing with graphs. The second part uses these patterns to provide language constructs that allow a graph algorithm to be specified. Programmers can work with these language constructs without worrying about their implementation, which is the focus of the third part. Implementation is handled by a compiler, which can specialize code generation for a backend device. The book also includes suggestive results on differe
出版日期Book 2020
關(guān)鍵詞Graph Algorithms; Software Engineering; Model-Driven Software Engineering; Domain-Specific Languages; Co
版次1
doihttps://doi.org/10.1007/978-3-030-41886-1
isbn_softcover978-3-030-41888-5
isbn_ebook978-3-030-41886-1
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Distributed Graph Analytics影響因子(影響力)




書(shū)目名稱Distributed Graph Analytics影響因子(影響力)學(xué)科排名




書(shū)目名稱Distributed Graph Analytics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Distributed Graph Analytics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Distributed Graph Analytics被引頻次




書(shū)目名稱Distributed Graph Analytics被引頻次學(xué)科排名




書(shū)目名稱Distributed Graph Analytics年度引用




書(shū)目名稱Distributed Graph Analytics年度引用學(xué)科排名




書(shū)目名稱Distributed Graph Analytics讀者反饋




書(shū)目名稱Distributed Graph Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:41:39 | 只看該作者
hms used in distributed graph analytics in a high level nota.This book brings together two important trends: graph algorithms and high-performance computing. Efficient and scalable execution of graph processing applications in data or network analysis requires innovations at multiple levels: algorit
地板
發(fā)表于 2025-3-22 08:23:54 | 只看該作者
5#
發(fā)表于 2025-3-22 09:09:41 | 只看該作者
https://doi.org/10.1057/9780230270688This chapter provides some insights into the issues in programming parallel algorithms. Parallelism, atomicity, push and pull types of computation, algorithms driven by topology or data, vertex based, edge based and worklist based computation, are some of the important considerations in designing parallel implementations.
6#
發(fā)表于 2025-3-22 16:03:11 | 只看該作者
https://doi.org/10.1057/9780230270688This chapter provides an overview of GPU architectures and CUDA programming. The performance of the same graph algorithms on multi-core CPU and GPU are usually very different. Intricacies of thread scheduling, barrier synchronization, warp based execution, memory hierarchy, and their effects on graph analytics are illustrated with simple examples.
7#
發(fā)表于 2025-3-22 20:34:38 | 只看該作者
https://doi.org/10.1057/9780230270688The domain-specific language . is presented in this chapter. The data types and statements of . that support easy programming of graph analytics applications are described. To drive home the point that . programs can be very efficient, code generation mechanisms used in the . compiler are delineated with examples.
8#
發(fā)表于 2025-3-23 00:48:15 | 只看該作者
9#
發(fā)表于 2025-3-23 04:08:48 | 只看該作者
Efficient Parallel Implementation of Graph Algorithms,This chapter provides some insights into the issues in programming parallel algorithms. Parallelism, atomicity, push and pull types of computation, algorithms driven by topology or data, vertex based, edge based and worklist based computation, are some of the important considerations in designing parallel implementations.
10#
發(fā)表于 2025-3-23 06:00:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶绥县| 抚顺市| 芦溪县| 志丹县| 台州市| 莱州市| 彰武县| 隆子县| 泸定县| 荣成市| 双鸭山市| 永新县| 饶河县| 灵武市| 丁青县| 南靖县| 平山县| 交口县| 隆安县| 长子县| 宁陕县| 正蓝旗| 高唐县| 米泉市| 南汇区| 和静县| 望江县| 青神县| 玉田县| 永安市| 凤冈县| 武定县| 阳高县| 临泽县| 泽库县| 肃南| 普洱| 崇礼县| 五大连池市| 伊金霍洛旗| 合山市|