找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Computing and Artificial Intelligence, Volume 2: Special Sessions 18th International Con; Sara Rodríguez González,José Manuel

[復(fù)制鏈接]
樓主: DUBIT
11#
發(fā)表于 2025-3-23 10:39:48 | 只看該作者
Design and Configuration of Software Tools for the Remote Performance of Laboratory Experiments in Ments are made in the frame of a marine survey postgraduate course which due to COVID-19 pandemia must be performed online. The paper aims clearly at the performance not only of a specific laboratory remotely, but in the development of a generalised procedure that will initially cover the needs of th
12#
發(fā)表于 2025-3-23 17:23:05 | 只看該作者
About the Reversibility of Elementary Cellular Automata with Rule Number 180ions for reversibility are provided in terms of the number of cells of the cellular space: it is shown that when periodic boundary conditions are considered, ECA 180 is reversible when the cellular space is constituted by an odd number of cells.
13#
發(fā)表于 2025-3-23 18:30:18 | 只看該作者
Automatic Generator of Loading Rules and Its Applications on Logistics Operationse or packing cargo in a vehicle cargo. It was analyzed the feasible sequences to perform such operations and how it limits the possible sequences that could be created. Furthermore, it was showed the computational performance to propose a feasible solution for large-scale problems of regular spaces
14#
發(fā)表于 2025-3-24 00:00:19 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:11 | 只看該作者
16#
發(fā)表于 2025-3-24 08:38:33 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:10 | 只看該作者
About the Reversibility of Elementary Cellular Automata with Rule Number 180ions for reversibility are provided in terms of the number of cells of the cellular space: it is shown that when periodic boundary conditions are considered, ECA 180 is reversible when the cellular space is constituted by an odd number of cells.
18#
發(fā)表于 2025-3-24 17:23:24 | 只看該作者
19#
發(fā)表于 2025-3-24 20:26:08 | 只看該作者
978-3-030-86886-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
20#
發(fā)表于 2025-3-24 23:40:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳市| 盱眙县| 林西县| 小金县| 汝阳县| 左云县| 清原| 厦门市| 博白县| 罗山县| 通榆县| 松潘县| 泾川县| 东至县| 曲松县| 四平市| 祁门县| 门头沟区| 绥江县| 东丽区| 开原市| 饶阳县| 高青县| 怀安县| 潜山县| 舒城县| 德安县| 防城港市| 沁源县| 乐业县| 库伦旗| 永清县| 静乐县| 娄烦县| 五常市| 怀安县| 和田县| 垣曲县| 墨竹工卡县| 克什克腾旗| 延吉市|