找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance-Regular Graphs; Andries E. Brouwer,Arjeh M. Cohen,Arnold Neumaier Book 1989 Springer-Verlag Berlin Heidelberg 1989 Arithmetic.Lie

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:56:55 | 只看該作者
32#
發(fā)表于 2025-3-27 05:05:34 | 只看該作者
Incidence, Prevalence, and ClassificationIn the later sections almost all known infinite families of distance-transitive graphs are described in this framework. The chapter ends with a determination of all distance-transitive graphs which naturally arise from a Tits system in a finite Chevalley group. Much more information on Tits systems,
33#
發(fā)表于 2025-3-27 08:38:23 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:49 | 只看該作者
The Decubitus Ulcer in Clinical Practicer 9 and implicitly in the context of parabolic representations of groups of Lie type. The nonisotropic points usually fall into a few orbits of the isometry group. The permutation rank of these orbits depends on the cardinality of the underlying field. We show that only in a few cases the related gr
35#
發(fā)表于 2025-3-27 15:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:09 | 只看該作者
https://doi.org/10.1007/978-3-642-74341-2Arithmetic; Lie; geometry; mathematics; proof; symmetric relation; combinatorics
37#
發(fā)表于 2025-3-28 00:09:03 | 只看該作者
978-3-642-74343-6Springer-Verlag Berlin Heidelberg 1989
38#
發(fā)表于 2025-3-28 03:15:27 | 只看該作者
Fluctuations of Conserved ChargesMotivated by applications to the classification of certain distance-regular graphs we consider representations of graphs by sets of vectors in a Euclidean space.
39#
發(fā)表于 2025-3-28 07:49:42 | 只看該作者
40#
發(fā)表于 2025-3-28 13:34:37 | 只看該作者
The Decubitus Ulcer in Clinical PracticeIn this chapter we discuss the known infinite families of graphs with classical parameters, except for some graphs of Lie type, treated in the next chapter. A few sporadic graphs with classical parameters can be found in Chapters 3 and 11, cf. Table 6.1.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高雄市| 玛沁县| 鄂尔多斯市| 岑溪市| 上饶县| 阳春市| 西充县| 莒南县| 鄂托克前旗| 陆河县| 乐业县| 晋江市| 河池市| 房产| 通许县| 旅游| 新乡市| 洛宁县| 泗水县| 那坡县| 全州县| 盐边县| 清水县| 荆门市| 徐闻县| 邵阳市| 资源县| 金秀| 高密市| 察雅县| 肥城市| 西安市| 宜春市| 边坝县| 承德县| 阳信县| 炎陵县| 弥勒县| 新泰市| 当涂县| 桑日县|