找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance-Regular Graphs; Andries E. Brouwer,Arjeh M. Cohen,Arnold Neumaier Book 1989 Springer-Verlag Berlin Heidelberg 1989 Arithmetic.Lie

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:56:55 | 只看該作者
32#
發(fā)表于 2025-3-27 05:05:34 | 只看該作者
Incidence, Prevalence, and ClassificationIn the later sections almost all known infinite families of distance-transitive graphs are described in this framework. The chapter ends with a determination of all distance-transitive graphs which naturally arise from a Tits system in a finite Chevalley group. Much more information on Tits systems,
33#
發(fā)表于 2025-3-27 08:38:23 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:49 | 只看該作者
The Decubitus Ulcer in Clinical Practicer 9 and implicitly in the context of parabolic representations of groups of Lie type. The nonisotropic points usually fall into a few orbits of the isometry group. The permutation rank of these orbits depends on the cardinality of the underlying field. We show that only in a few cases the related gr
35#
發(fā)表于 2025-3-27 15:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:09 | 只看該作者
https://doi.org/10.1007/978-3-642-74341-2Arithmetic; Lie; geometry; mathematics; proof; symmetric relation; combinatorics
37#
發(fā)表于 2025-3-28 00:09:03 | 只看該作者
978-3-642-74343-6Springer-Verlag Berlin Heidelberg 1989
38#
發(fā)表于 2025-3-28 03:15:27 | 只看該作者
Fluctuations of Conserved ChargesMotivated by applications to the classification of certain distance-regular graphs we consider representations of graphs by sets of vectors in a Euclidean space.
39#
發(fā)表于 2025-3-28 07:49:42 | 只看該作者
40#
發(fā)表于 2025-3-28 13:34:37 | 只看該作者
The Decubitus Ulcer in Clinical PracticeIn this chapter we discuss the known infinite families of graphs with classical parameters, except for some graphs of Lie type, treated in the next chapter. A few sporadic graphs with classical parameters can be found in Chapters 3 and 11, cf. Table 6.1.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
伽师县| 阳泉市| 深州市| 营口市| 宜城市| 汝州市| 偃师市| 登封市| 溧水县| 乌恰县| 中西区| 蓬安县| 高雄市| 璧山县| 汶上县| 丰台区| 合江县| 获嘉县| 赞皇县| 永善县| 石城县| 五峰| 井冈山市| 凌源市| 武冈市| 宁城县| 江北区| 苍南县| 绵阳市| 栾城县| 广丰县| 临泽县| 辽中县| 沈丘县| 洛隆县| 吴桥县| 福州市| 上虞市| 上蔡县| 太康县| 正蓝旗|