找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Displaying Modal Logic; Heinrich Wansing Book 1998 Springer Science+Business Media Dordrecht 1998 Cut-elimination theorem.Extension.logic.

[復(fù)制鏈接]
樓主: legerdemain
21#
發(fā)表于 2025-3-25 07:06:24 | 只看該作者
22#
發(fā)表于 2025-3-25 07:58:34 | 只看該作者
Tarskian Structured Consequence Relations and Functional Completeness,ent-style proof-theoretic semantics, see e.g. [8], [96], [97], [151], [178], and [180]. The idea now is to apply this kind of approach to Gabbay’s [67] notion of a Tarski-type . |~ between structured databases Δ and single formulas .. This concept generalizes the ordinary notion of single-conclusion
23#
發(fā)表于 2025-3-25 14:12:24 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:04:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:15:04 | 只看該作者
Predicate Logics on Display,logics obtained by adopting van Benthem’s modal perspective on first-order logic are considered. The Gentzen systems for these logics augment Belnap’s display logic, . by introduction rules for the existential and the universal quantifier. These rules for ?. and ?. are analogous to the display intro
27#
發(fā)表于 2025-3-26 06:04:35 | 只看該作者
Appendix, a sequent calculus presentation. Usually, this is a rather fortunate situation. It may happen that certain axiom schemata are characterizable by algebraic or relational properties expressible in an interesting fragment of first-order logic, and that Gentzen-style proof systems lend themselves to au
28#
發(fā)表于 2025-3-26 10:46:06 | 只看該作者
29#
發(fā)表于 2025-3-26 13:37:23 | 只看該作者
Predicate Logics on Display,duction rules for the modal operators □ and ? and do not themselves allow the Barcan formula or its converse to be derived. En route from the minimal ‘modal’ predicate logic to full first-order logic, axiomatic extensions are captured by purely structural sequent rules. The chapter has two main aims, namely
30#
發(fā)表于 2025-3-26 17:03:33 | 只看該作者
Book 1998essfully defended at Leipzig University, November 1997. It collects work on proof systems for modal and constructive logics I have done over the last few years. The main concern is display logic, a certain refinement of Gentzen‘s sequent calculus developed by Nuel D. Belnap. This book is far from of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 17:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
六枝特区| 玉龙| 远安县| 沈阳市| 襄樊市| 闵行区| 鲁山县| 尚义县| 望谟县| 武强县| 景德镇市| 栾城县| 遂平县| 红桥区| 韩城市| 林西县| 济南市| 连州市| 宜兰市| 陆丰市| 南陵县| 绥阳县| 朝阳县| 宁德市| 安多县| 和龙市| 绥宁县| 湛江市| 成都市| 禄丰县| 闸北区| 河源市| 辽阳市| 台南市| 宣恩县| 安康市| 永泰县| 乃东县| 江津市| 宝兴县| 惠来县|