找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dispersive Shallow Water Waves; Theory, Modeling, an Gayaz Khakimzyanov,Denys Dutykh,Oleg Gusev Book 2020 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:39:57 | 只看該作者
Numerical Simulation on a Globally Flat Space,sure is found by solving a nonlinear elliptic equation. Moreover, this form of governing equations allows to determine the natural form of boundary conditions to obtain a well-posed (numerical) problem.
12#
發(fā)表于 2025-3-23 17:40:41 | 只看該作者
Model Derivation on a Globally Spherical Geometry,odel contains an additional velocity variable which has to be specified by a closure relation. Physically, it represents a dispersive correction to the velocity vector. So, the main outcome of this chapter should be rather considered as a whole family of long wave models.
13#
發(fā)表于 2025-3-23 21:13:43 | 只看該作者
Model Derivation on a Globally Flat Space,KdV) equation, re-derived later by D. Korteweg and G. de Vries. Of course, J. Boussinesq proposed also the first .-type equation as a theoretical explanation of . observed earlier by J. Russell. After this initial active period there was a break in this field until 1950s. The silence was interrupted
14#
發(fā)表于 2025-3-23 23:38:52 | 只看該作者
15#
發(fā)表于 2025-3-24 03:41:39 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:09 | 只看該作者
Numerical Simulation on a Globally Spherical Geometry, approach. Namely, equations are decomposed on a uniform elliptic equation for the dispersive pressure component and a hyperbolic part of shallow water equations (on a sphere) with source terms. This algorithm is implemented as a two-step predictor–corrector scheme. On every step we solve separately
17#
發(fā)表于 2025-3-24 10:48:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:12 | 只看該作者
Lecture Notes in Geosystems Mathematics and Computinghttp://image.papertrans.cn/e/image/281525.jpg
19#
發(fā)表于 2025-3-24 21:17:09 | 只看該作者
https://doi.org/10.1007/978-3-030-46267-3Nonlinear dispersive waves; Dispersive wave; Dispersive wave equation; Dispersive models; Water wave mod
20#
發(fā)表于 2025-3-25 02:23:26 | 只看該作者
978-3-030-46266-6Springer Nature Switzerland AG 2020
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
礼泉县| 石狮市| 行唐县| 建宁县| 北票市| 蓝田县| 和龙市| 明星| 南充市| 富宁县| 郓城县| 临湘市| 静安区| 叶城县| 扬州市| 施甸县| 肃南| 郓城县| 改则县| 吴江市| 玉溪市| 清水河县| 昌都县| 南陵县| 石泉县| 伊川县| 舟曲县| 汾阳市| 德庆县| 乌苏市| 康保县| 施秉县| 固安县| 洮南市| 巢湖市| 天柱县| 东兴市| 堆龙德庆县| 邳州市| 通州市| 建德市|