找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dispersive Equations and Nonlinear Waves; Generalized Korteweg Herbert Koch,Daniel Tataru,Monica Vi?an Textbook 2014 Springer Basel 2014 Fo

[復(fù)制鏈接]
樓主: analgesic
31#
發(fā)表于 2025-3-26 21:50:04 | 只看該作者
Structure of the Financial Systemeralization of the Riemann–Stieltjes integral to functions of bounded .-variation against the derivative of a function of bounded .-variation, 1. + 1. 1, is due to Young [34]. Much later Lyons developed his theory of rough paths [23] and [24], building on Young’s ideas, but going much further.
32#
發(fā)表于 2025-3-27 02:20:52 | 只看該作者
https://doi.org/10.1007/978-3-319-77727-6 [7] and by Grünrock for the Airy equation [10] and the Kadomtsev–Petviashvili II equation [11]. The bilinear estimates for the Kadomtsev–Petviashvili equation have been influenced by the careful work of M. Hadac. Bilinear estimates are standard tools in dispersive equations.
33#
發(fā)表于 2025-3-27 06:50:27 | 只看該作者
https://doi.org/10.1007/978-3-319-77727-6The first example describes the interaction of three waves of different velocities. It is elementary and displays the role of adapted function spaces on an elementary level. The limitations of our current understanding become obvious as well: The result should remain true under small perturbations o
34#
發(fā)表于 2025-3-27 09:43:04 | 只看該作者
35#
發(fā)表于 2025-3-27 16:37:48 | 只看該作者
36#
發(fā)表于 2025-3-27 21:11:06 | 只看該作者
Well-posedness for nonlinear dispersive equationson an elementary level. The limitations of our current understanding become obvious as well: The result should remain true under small perturbations of the system, but I have no idea how to approach perturbed equations.
37#
發(fā)表于 2025-3-28 01:33:31 | 只看該作者
1661-237X al blow up solutions and interaction Morawetz estimates.IntrThe first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vr
38#
發(fā)表于 2025-3-28 04:40:43 | 只看該作者
39#
發(fā)表于 2025-3-28 07:47:24 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 昌黎县| 临武县| 根河市| 庆云县| 弋阳县| 全椒县| 迁安市| 龙岩市| 广东省| 叙永县| 沂源县| 扎囊县| 舒兰市| 丰都县| 阳曲县| 临澧县| 曲阳县| 梁平县| 博湖县| 祁门县| 大安市| 顺义区| 延津县| 德庆县| 徐闻县| 平武县| 南丹县| 日土县| 金阳县| 贵港市| 遵义市| 秦皇岛市| 南投县| 抚宁县| 永福县| 广汉市| 松原市| 罗山县| 堆龙德庆县| 利川市|