找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復(fù)制鏈接]
樓主: Iodine
21#
發(fā)表于 2025-3-25 05:44:38 | 只看該作者
Discriminative Learning in Biometricsirst give an overview on the systems in terms of the input features and common applications. After that, we will provide a self-contained introduction to some discriminative learning tools that are commonly used in biometrics. A clear understanding of these techniques could be of essential importanc
22#
發(fā)表于 2025-3-25 11:26:06 | 只看該作者
Metric Learning with Biometric Applicationsesent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the trip
23#
發(fā)表于 2025-3-25 13:44:54 | 只看該作者
Sparse Representation-Based Classification for Biometric Recognitionthod has received much attention in recent years and is widely applied in many fields, such as image denoising, debluring, restoration, super-resolution, segmentation, classification, and visual tracking. In this chapter, we first summarize some frameworks of sparse representation, and then we give
24#
發(fā)表于 2025-3-25 16:13:58 | 只看該作者
Discriminative Features for Palmprint Authentications, which extract the coding features of palmprint images, are among the most promising palmprint authentication methods. In this chapter, we first give a brief review of palmprint authentication methods in Sect.?.. Section?. describes the conventional coding-based palmprint identification methods. I
25#
發(fā)表于 2025-3-25 23:59:58 | 只看該作者
Orientation Features and Distance Measure of Palmprint AuthenticationFor the orientation code-based methods, the orientation extraction and distance measure are two essential issues for palmprint verification. In this chapter, some efficient orientation extraction methods and a novel distance measure method are presented. The chapter is organized as follows. We first
26#
發(fā)表于 2025-3-26 03:07:37 | 只看該作者
27#
發(fā)表于 2025-3-26 04:41:11 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:20:01 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大足县| 高州市| 保定市| 石嘴山市| 大厂| 望江县| 郯城县| 罗城| 蚌埠市| 晴隆县| 罗城| 佛学| 乐东| 龙南县| 汝城县| 论坛| 科技| 武安市| 行唐县| 西盟| 华池县| 岐山县| 车致| 梓潼县| 南江县| 马关县| 钦州市| 漯河市| 上饶县| 乌拉特后旗| 阿巴嘎旗| 九龙城区| 许昌市| 丰县| 西畴县| 翼城县| 巫溪县| 武功县| 安溪县| 万山特区| 宝山区|