找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discretization of Processes; Jean Jacod,Philip Protter Book 2012 Springer-Verlag Berlin Heidelberg 2012 60F05, 60G44, 60H10, 60H35, 60J75,

[復制鏈接]
樓主: clannish
21#
發(fā)表于 2025-3-25 06:20:13 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:17 | 只看該作者
Rebecca L. Bakal,Monica R. McLemorethe one for the unnormalized functionals ..(.,.) is in Sect. 5.1, whereas Sects. 5.2 and 5.3 provide the ones for the normalized functionals .′.(.,.). In both cases, . needs to be an It? semimartingale, and only regular discretization schemes are considered..Section 5.4 contains the Central Limit Th
23#
發(fā)表于 2025-3-25 11:42:26 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:21:18 | 只看該作者
Robert Vale,Brenda Vale,Tran Thuc Handerlying process .. This covers two different situations: . In Sects. 8.2 and 8.3 the Laws of Large Numbers for the unnormalized functionals are presented, for a fixed number . or an increasing number .. of increments, respectively: the methods and results are deeply different in the two cases. In c
26#
發(fā)表于 2025-3-26 01:13:58 | 只看該作者
27#
發(fā)表于 2025-3-26 07:26:48 | 只看該作者
https://doi.org/10.1007/978-981-99-8842-6e now . for a function . on .×?.×?., where . is the dimension of ., and it is the same for the normalized functional upon dividing the increment by ...Sections 10.1 and 10.2 are devoted to unnormalized functionals, in two situations: first we treat the case for a “general” test function ., satisfyin
28#
發(fā)表于 2025-3-26 11:48:59 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:17 | 只看該作者
Reference work 2020Latest editionand ....→0..In this setting, the Central Limit Theorems are considerably more difficult to prove, and the rate of convergence becomes . instead of .. Unnormalized and normalized functionals are studied in Sects.?12.1 and?12.2, respectively..No specific application is given in this chapter, but it is
30#
發(fā)表于 2025-3-26 17:49:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南京市| 荥阳市| 左贡县| 乌苏市| 西藏| 天水市| 平和县| 东丽区| 苏尼特右旗| 杭锦旗| 怀来县| 安西县| 邛崃市| 临安市| 榆中县| 赣榆县| 东乌| 怀集县| 介休市| 彭州市| 曲周县| 南城县| 金山区| 平安县| 上栗县| 黄浦区| 桑日县| 托克逊县| 木兰县| 佛学| 包头市| 韶山市| 图木舒克市| 关岭| 绥德县| 太仆寺旗| 甘洛县| 永德县| 西乡县| 聂拉木县| 澜沧|