找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Semi-Markov Random Evolutions and Their Applications; Nikolaos Limnios,Anatoliy Swishchuk Book 2023 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: sulfonylureas
21#
發(fā)表于 2025-3-25 03:39:36 | 只看該作者
A Brief Survey of the Literature,s well as the detailed proofs of the theorems. Applications of these results, for additive functionals of SMC, geometric Markov renewal processes, dynamical systems, or difference equations, etc., are given.
22#
發(fā)表于 2025-3-25 09:19:46 | 只看該作者
Sustainability and Optimality of Public Debttic split, partition in subsets of the state space, merging scheme, and aggregation of many states to one state, where it is much simpler to study. The stochastic systems introduced in chapter 3 are studied as an application of the above theory.
23#
發(fā)表于 2025-3-25 14:17:25 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:00 | 只看該作者
Sustainability and Optimality of Public Debtm, the stochastic SARS model. The model here, for a multistate epidemiological system, is based on difference equations. The merging problem is also considered here, and the averaging and diffusion approximation results of the stochastic SARS model are given.
25#
發(fā)表于 2025-3-25 20:50:13 | 只看該作者
Discrete-Time Semi-Markov Random Evolutions,mes, and tightness of probability measures. The stochastic systems that are considered in the sequel are also presented and formulated in terms of random evolution as additive functionals, geometric Markov renewal chains, and dynamical systems. The general series scheme is presented.
26#
發(fā)表于 2025-3-26 02:11:27 | 只看該作者
27#
發(fā)表于 2025-3-26 07:41:04 | 只看該作者
DTSMRE in Reduced Random Media,tic split, partition in subsets of the state space, merging scheme, and aggregation of many states to one state, where it is much simpler to study. The stochastic systems introduced in chapter 3 are studied as an application of the above theory.
28#
發(fā)表于 2025-3-26 11:02:58 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:07:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿泉市| 宜阳县| 囊谦县| 金乡县| 甘孜| 棋牌| 贵南县| 盐池县| 富蕴县| 从江县| 朝阳区| 承德市| 柯坪县| 北碚区| 砀山县| 保德县| 四会市| 江都市| 历史| 连州市| 宜兴市| 蒙阴县| 肇源县| 花莲市| 桂林市| 三门县| 昔阳县| 芒康县| 玉林市| 武威市| 广丰县| 陕西省| 鄂托克前旗| 鄂伦春自治旗| 丰城市| 永年县| 涟源市| 广平县| 岳阳市| 志丹县| 木兰县|