找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Markov Control Processes; Basic Optimality Cri Onésimo Hernández-Lerma,Jean Bernard Lasserre Book 1996 Springer Science+Busin

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 03:27:39 | 只看該作者
Infinite-Horizon Discounted-Cost Problems,inite-horizon problems, but for many purposes it is convenient to introduce the fiction that the optimization horizon is infinite. Certainly, for instance, processes of capital accumulation for an economy, or some problems on inventory or portfolio management, do not necessarily have a natural stopp
22#
發(fā)表于 2025-3-25 08:00:33 | 只看該作者
The Linear Programming Formulation, principle applicable to almost any class of OCPs, deterministic or stochastic, in discrete or continuous time, constrained or unconstrained, with finite or infinite optimization horizon—some references are given in §6.6. The preferred techniques, on the other hand, include the Lagrange multipliers
23#
發(fā)表于 2025-3-25 12:55:47 | 只看該作者
0172-4568 y of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, cont
24#
發(fā)表于 2025-3-25 16:16:38 | 只看該作者
25#
發(fā)表于 2025-3-25 22:28:55 | 只看該作者
https://doi.org/10.1007/978-981-15-3473-7ite or infinite optimization horizon—some references are given in §6.6. The preferred techniques, on the other hand, include the Lagrange multipliers method and convex and linear programming techniques.
26#
發(fā)表于 2025-3-26 02:32:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:35:59 | 只看該作者
The Linear Programming Formulation,ite or infinite optimization horizon—some references are given in §6.6. The preferred techniques, on the other hand, include the Lagrange multipliers method and convex and linear programming techniques.
28#
發(fā)表于 2025-3-26 12:14:00 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:05 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 18:30:39 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仪陇县| 台湾省| 辽宁省| 灯塔市| 永昌县| 曲阳县| 大宁县| 将乐县| 开化县| 睢宁县| 福建省| 柏乡县| 衡水市| 吴旗县| 遂宁市| 焦作市| 大方县| 江陵县| 徐汇区| 乌恰县| 泸州市| 黔东| 兴文县| 藁城市| 舟曲县| 连州市| 贵溪市| 顺义区| 揭西县| 马山县| 大关县| 长垣县| 富平县| 鹤山市| 肇州县| 清涧县| 兰溪市| 建水县| 阿拉善右旗| 柘城县| 山东|