找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry, Graphs, and Games; 21st Japanese Confer Jin Akiyama,Reginaldo M. Marcelo,Yushi Uno Conference proceedi

[復制鏈接]
樓主: 正當理由
11#
發(fā)表于 2025-3-23 12:34:21 | 只看該作者
https://doi.org/10.1007/978-1-4615-0603-4 of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
12#
發(fā)表于 2025-3-23 15:03:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:51 | 只看該作者
Robustness in Power-Law Kinetic Systems with Reactant-Determined Interactions, of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
14#
發(fā)表于 2025-3-24 02:13:33 | 只看該作者
0302-9743 etry and Graphs, JCDCGGG 2018, held in Quezon City, Philippines, in September 2018.. The total of 14 papers included in this volume was carefully reviewed and selected from 25 submissions. The papers feature advances made in the field of computational geometry and focus on emerging technologies, new
15#
發(fā)表于 2025-3-24 04:28:35 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:55 | 只看該作者
https://doi.org/10.1007/978-3-642-21308-3ni and Rappaport [JCDCG 2017] gave an algorithm for determining whether a ball-capturing beacon strategy exists, while conjecturing that such a strategy always exists. We disprove this conjecture by constructing orthogonal and general-position polygons in which the ball and the beacon can never be united.
17#
發(fā)表于 2025-3-24 13:08:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
田林县| 阜新市| 灵寿县| 贵溪市| 张家界市| 沁水县| 建昌县| 彭山县| 泾阳县| 濉溪县| 桓台县| 怀柔区| 虞城县| 凤翔县| 襄城县| 日土县| 陵川县| 徐汇区| 方城县| 隆回县| 上思县| 新蔡县| 石泉县| 黔江区| 台前县| 通山县| 登封市| 宁海县| 宜州市| 纳雍县| 伽师县| 乐平市| 通海县| 敦化市| 沈丘县| 永丰县| 洪雅县| 吉水县| 佛冈县| 枣阳市| 通城县|