找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry, Graphs, and Games; 21st Japanese Confer Jin Akiyama,Reginaldo M. Marcelo,Yushi Uno Conference proceedi

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:34:21 | 只看該作者
https://doi.org/10.1007/978-1-4615-0603-4 of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
12#
發(fā)表于 2025-3-23 15:03:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:51 | 只看該作者
Robustness in Power-Law Kinetic Systems with Reactant-Determined Interactions, of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
14#
發(fā)表于 2025-3-24 02:13:33 | 只看該作者
0302-9743 etry and Graphs, JCDCGGG 2018, held in Quezon City, Philippines, in September 2018.. The total of 14 papers included in this volume was carefully reviewed and selected from 25 submissions. The papers feature advances made in the field of computational geometry and focus on emerging technologies, new
15#
發(fā)表于 2025-3-24 04:28:35 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:55 | 只看該作者
https://doi.org/10.1007/978-3-642-21308-3ni and Rappaport [JCDCG 2017] gave an algorithm for determining whether a ball-capturing beacon strategy exists, while conjecturing that such a strategy always exists. We disprove this conjecture by constructing orthogonal and general-position polygons in which the ball and the beacon can never be united.
17#
發(fā)表于 2025-3-24 13:08:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青海省| 荆州市| 神木县| 宜丰县| 呼伦贝尔市| 西安市| 突泉县| 寿宁县| 罗田县| 宝山区| 塔河县| 乃东县| 郴州市| 寻乌县| 崇明县| 中牟县| 镇坪县| 岱山县| 黄山市| 潢川县| 定襄县| 巍山| 平安县| 嘉义县| 柳林县| 奈曼旗| 桓仁| 怀远县| 嵊州市| 河西区| 长沙县| 隆林| 安乡县| 嘉鱼县| 浦北县| 巴中市| 武胜县| 高平市| 四平市| 舞阳县| 保靖县|