找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2001 Springer-Verla

[復制鏈接]
樓主: 使委屈
61#
發(fā)表于 2025-4-1 03:29:38 | 只看該作者
62#
發(fā)表于 2025-4-1 08:58:21 | 只看該作者
63#
發(fā)表于 2025-4-1 11:16:17 | 只看該作者
J. Hobbhahn,K. Peter,A. E. Goetz,P. Conzen) ∩ conv (..) = ? for all 1 ≤ . < . ≤ ., where conv(..) denotes the convex hull of ..; and (.) each .. contains exactly .. red points and .. blue points for every 1 ≤ . ≤ ...We shall prove that the above partition exists in the case where (i) 2 ≤ . ≤ 8 and 1 ≤ .. ≤ ./2 for every 1 ≤ . ≤ ., and (ii) .. = .. = ... = .. = 2 and .. =1.
64#
發(fā)表于 2025-4-1 17:32:53 | 只看該作者
65#
發(fā)表于 2025-4-1 21:36:33 | 只看該作者
Universal Measuring Devices Without Gradationsally has gradations marked on its sides. In this paper we study measuring devices without gradations but which nevertheless can measure any integral amount, say liters, of liquid up to their full capacity. These devices will be called ... We determine the largest volume of measuring device with tria
66#
發(fā)表于 2025-4-2 00:18:24 | 只看該作者
A Note on the Purely Recursive Dissection for a Sequentially ,-Divisible Squareged to form two squares, three squares, and so on, up to . squares successively. A dissection is called . iff . more pieces needed to increase the maximum number . of composed squares by one. Ozawa found a general dissection of type-3, while Akiyama and Nakamura found a particular, “purely recursive
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
观塘区| 大埔县| 梁平县| 南木林县| 沙河市| 武陟县| 嘉义县| 黄山市| 承德县| 乐陵市| 兰考县| 日喀则市| 安塞县| 栖霞市| 大洼县| 三台县| 兴义市| 兰西县| 延寿县| 阳高县| 长治市| 晴隆县| 潍坊市| 九龙城区| 涟源市| 股票| 隆昌县| 晋城| 武宣县| 应用必备| 漯河市| 双流县| 潜江市| 革吉县| 乌拉特后旗| 兴仁县| 涿鹿县| 克山县| 江源县| 浏阳市| 梅州市|