找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2001 Springer-Verla

[復(fù)制鏈接]
樓主: 使委屈
61#
發(fā)表于 2025-4-1 03:29:38 | 只看該作者
62#
發(fā)表于 2025-4-1 08:58:21 | 只看該作者
63#
發(fā)表于 2025-4-1 11:16:17 | 只看該作者
J. Hobbhahn,K. Peter,A. E. Goetz,P. Conzen) ∩ conv (..) = ? for all 1 ≤ . < . ≤ ., where conv(..) denotes the convex hull of ..; and (.) each .. contains exactly .. red points and .. blue points for every 1 ≤ . ≤ ...We shall prove that the above partition exists in the case where (i) 2 ≤ . ≤ 8 and 1 ≤ .. ≤ ./2 for every 1 ≤ . ≤ ., and (ii) .. = .. = ... = .. = 2 and .. =1.
64#
發(fā)表于 2025-4-1 17:32:53 | 只看該作者
65#
發(fā)表于 2025-4-1 21:36:33 | 只看該作者
Universal Measuring Devices Without Gradationsally has gradations marked on its sides. In this paper we study measuring devices without gradations but which nevertheless can measure any integral amount, say liters, of liquid up to their full capacity. These devices will be called ... We determine the largest volume of measuring device with tria
66#
發(fā)表于 2025-4-2 00:18:24 | 只看該作者
A Note on the Purely Recursive Dissection for a Sequentially ,-Divisible Squareged to form two squares, three squares, and so on, up to . squares successively. A dissection is called . iff . more pieces needed to increase the maximum number . of composed squares by one. Ozawa found a general dissection of type-3, while Akiyama and Nakamura found a particular, “purely recursive
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南平市| 民权县| 光山县| 田林县| 卢湾区| 天门市| 柳林县| 黔西县| 赫章县| 张家界市| 恩平市| 南丰县| 昌都县| 江北区| 文昌市| 山西省| 乐清市| 吴桥县| 方山县| 丁青县| 象山县| 遂溪县| 延庆县| 平乡县| 杂多县| 旬阳县| 获嘉县| 建德市| 苏尼特左旗| 广河县| 贵阳市| 新乐市| 永新县| 屯门区| 桐庐县| 砀山县| 吉水县| 大庆市| 牡丹江市| 内黄县| 永福县|