找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2000 Springer-Verla

[復(fù)制鏈接]
樓主: 帳簿
51#
發(fā)表于 2025-3-30 10:26:34 | 只看該作者
52#
發(fā)表于 2025-3-30 12:27:10 | 只看該作者
53#
發(fā)表于 2025-3-30 19:47:04 | 只看該作者
54#
發(fā)表于 2025-3-31 00:04:17 | 只看該作者
Living with ,yhedra. We describe an important and difficult class of polyhedra, called configuration polytopes, that have application to determining the ground states of alloy phase diagrams. Experience gained while trying to solve these problems lead to a number of improvements to the original implementation.
55#
發(fā)表于 2025-3-31 02:16:33 | 只看該作者
On the Existente of a Point Subset with 4 or 5 Interior Points.) be the smallest integer such that every set of points in the plane, no three collinear, containing at least .(.) interior points has a subset of points containing . or . + 1 interior points. We proved that .(3) =3 in an earlier paper. In this paper we prove that .(4) = 7.
56#
發(fā)表于 2025-3-31 05:16:02 | 只看該作者
Folding and Cutting Paperf cuts. The folds are based on the straight skeleton, which lines up the desired edges by folding along various bisectors; and a collection of perpendiculars that make the crease pattern foldable. We prove that the crease pattern is flat foldable by demonstrating a family of folded states with the desired properties.
57#
發(fā)表于 2025-3-31 10:58:19 | 只看該作者
2-Dimension Ham Sandwich Theorem for Partitioning into Three Convex Piecesllinear, |..| = ., and |..| = .. This paper shows that Kaneko and Kano’s conjecture is true, i.e., .. ∪ .. can be partitioned into . subsets ..,..,...,.. satisfying that: (i) conv(..) ∩ conv(..) = ? for all 1 ≤ . < . ≤ .; (ii) |.. ∩ ..|= . and |.. ∩ ..| = . for all 1 ≤ . ≤ .. This is a generalization of 2-dimension Ham Sandwich Theorem.
58#
發(fā)表于 2025-3-31 15:17:40 | 只看該作者
59#
發(fā)表于 2025-3-31 18:39:50 | 只看該作者
60#
發(fā)表于 2025-4-1 00:55:34 | 只看該作者
Jin Akiyama,Mikio Kano,Masatsugu UrabeIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹寨县| 英吉沙县| 灵宝市| 平武县| 宁波市| 孙吴县| 岗巴县| 鄂托克前旗| 改则县| 富民县| 江油市| 涡阳县| 邯郸市| 平湖市| 军事| 博爱县| 新津县| 沁阳市| 广宗县| 平南县| 即墨市| 横山县| 小金县| 怀宁县| 永靖县| 唐河县| 伊宁市| 洛隆县| 浮梁县| 北京市| 中牟县| 睢宁县| 凯里市| 苍南县| 泸西县| 株洲市| 玛纳斯县| 新乡市| 获嘉县| 扎兰屯市| 淳安县|