找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2000 Springer-Verla

[復(fù)制鏈接]
樓主: 帳簿
51#
發(fā)表于 2025-3-30 10:26:34 | 只看該作者
52#
發(fā)表于 2025-3-30 12:27:10 | 只看該作者
53#
發(fā)表于 2025-3-30 19:47:04 | 只看該作者
54#
發(fā)表于 2025-3-31 00:04:17 | 只看該作者
Living with ,yhedra. We describe an important and difficult class of polyhedra, called configuration polytopes, that have application to determining the ground states of alloy phase diagrams. Experience gained while trying to solve these problems lead to a number of improvements to the original implementation.
55#
發(fā)表于 2025-3-31 02:16:33 | 只看該作者
On the Existente of a Point Subset with 4 or 5 Interior Points.) be the smallest integer such that every set of points in the plane, no three collinear, containing at least .(.) interior points has a subset of points containing . or . + 1 interior points. We proved that .(3) =3 in an earlier paper. In this paper we prove that .(4) = 7.
56#
發(fā)表于 2025-3-31 05:16:02 | 只看該作者
Folding and Cutting Paperf cuts. The folds are based on the straight skeleton, which lines up the desired edges by folding along various bisectors; and a collection of perpendiculars that make the crease pattern foldable. We prove that the crease pattern is flat foldable by demonstrating a family of folded states with the desired properties.
57#
發(fā)表于 2025-3-31 10:58:19 | 只看該作者
2-Dimension Ham Sandwich Theorem for Partitioning into Three Convex Piecesllinear, |..| = ., and |..| = .. This paper shows that Kaneko and Kano’s conjecture is true, i.e., .. ∪ .. can be partitioned into . subsets ..,..,...,.. satisfying that: (i) conv(..) ∩ conv(..) = ? for all 1 ≤ . < . ≤ .; (ii) |.. ∩ ..|= . and |.. ∩ ..| = . for all 1 ≤ . ≤ .. This is a generalization of 2-dimension Ham Sandwich Theorem.
58#
發(fā)表于 2025-3-31 15:17:40 | 只看該作者
59#
發(fā)表于 2025-3-31 18:39:50 | 只看該作者
60#
發(fā)表于 2025-4-1 00:55:34 | 只看該作者
Jin Akiyama,Mikio Kano,Masatsugu UrabeIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茂名市| 永清县| 泗洪县| 平阴县| 哈巴河县| 青浦区| 铜梁县| 阳曲县| 伊通| 大连市| 鄂托克前旗| 宜黄县| 繁峙县| 鹤庆县| 济宁市| 义乌市| 海兴县| 高碑店市| 开鲁县| 清丰县| 通化市| 延长县| 霍山县| 宁南县| 昔阳县| 福安市| 通渭县| 阳高县| 金坛市| 宁国市| 清流县| 许昌市| 南宁市| 轮台县| 江西省| 萝北县| 崇义县| 杨浦区| 鄄城县| 淮北市| 乌拉特前旗|