找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Tomography; Foundations, Algorit Gabor T. Herman,Attila Kuba Book 1999 Springer Science+Business Media New York 1999 3-D torus.bay

[復(fù)制鏈接]
樓主: 氣泡
41#
發(fā)表于 2025-3-28 17:14:06 | 只看該作者
Reconstruction of Plane Figures from Two Projectionsimation. For this purpose, we introduce the notion of type 1 modification against nonuniquely reconstructed figures, and a kind of weight function to classify them. Many interesting open problems remain concerning theoretical justification of proposed algorithms for nonunique cases.
42#
發(fā)表于 2025-3-28 22:08:01 | 只看該作者
43#
發(fā)表于 2025-3-29 00:54:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:00 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:46 | 只看該作者
Probabilistic Modeling of Discrete Imageses in that the formulation is suited for the modeling of discrete images, and hence readily applicable to discrete tomography problems. Second, the distribution is “image-modeling” in the sense that random samples drawn from the distribution are likely to share important characteristics of the image
46#
發(fā)表于 2025-3-29 15:01:43 | 只看該作者
Multiscale Bayesian Methods for Discrete Tomographyptimization to find that reconstruction. Multiscale models have succeeded in improving representation of structure of varying scale in imagery, a chronic problem for common Markov random fields. This chapter shows that associated multiscale methods of optimization also avoid local minima of the log
47#
發(fā)表于 2025-3-29 18:03:47 | 只看該作者
An Algebraic Solution for Discrete Tomography It has applications in X-ray crystallography, in which the projections are the number of atoms in the crystal along a given line,and nondestructive testing. The 2D version of this problem is fairly well understood, and several algorithms for solving it are known, most of which involve discrete math
48#
發(fā)表于 2025-3-29 22:10:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:02 | 只看該作者
50#
發(fā)表于 2025-3-30 05:03:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴海县| 平乡县| 通州区| 泽库县| 伊金霍洛旗| 南部县| 额敏县| 南安市| 永年县| 沂源县| 韶关市| 吴堡县| 涿鹿县| 北安市| 潜山县| 杭州市| 河津市| 滦平县| 宜川县| 仁怀市| 怀集县| 临安市| 香格里拉县| 芷江| 资中县| 湘潭市| 平湖市| 恩施市| 繁峙县| 天全县| 钟山县| 龙海市| 陆河县| 安陆市| 东平县| 正阳县| 定州市| 正阳县| 博爱县| 沽源县| 梧州市|