找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Tomography; Foundations, Algorit Gabor T. Herman,Attila Kuba Book 1999 Springer Science+Business Media New York 1999 3-D torus.bay

[復(fù)制鏈接]
樓主: 氣泡
41#
發(fā)表于 2025-3-28 17:14:06 | 只看該作者
Reconstruction of Plane Figures from Two Projectionsimation. For this purpose, we introduce the notion of type 1 modification against nonuniquely reconstructed figures, and a kind of weight function to classify them. Many interesting open problems remain concerning theoretical justification of proposed algorithms for nonunique cases.
42#
發(fā)表于 2025-3-28 22:08:01 | 只看該作者
43#
發(fā)表于 2025-3-29 00:54:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:00 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:46 | 只看該作者
Probabilistic Modeling of Discrete Imageses in that the formulation is suited for the modeling of discrete images, and hence readily applicable to discrete tomography problems. Second, the distribution is “image-modeling” in the sense that random samples drawn from the distribution are likely to share important characteristics of the image
46#
發(fā)表于 2025-3-29 15:01:43 | 只看該作者
Multiscale Bayesian Methods for Discrete Tomographyptimization to find that reconstruction. Multiscale models have succeeded in improving representation of structure of varying scale in imagery, a chronic problem for common Markov random fields. This chapter shows that associated multiscale methods of optimization also avoid local minima of the log
47#
發(fā)表于 2025-3-29 18:03:47 | 只看該作者
An Algebraic Solution for Discrete Tomography It has applications in X-ray crystallography, in which the projections are the number of atoms in the crystal along a given line,and nondestructive testing. The 2D version of this problem is fairly well understood, and several algorithms for solving it are known, most of which involve discrete math
48#
發(fā)表于 2025-3-29 22:10:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:02 | 只看該作者
50#
發(fā)表于 2025-3-30 05:03:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶风县| 广丰县| 张掖市| 黄山市| 武穴市| 壶关县| 都兰县| 海门市| 新田县| 澄迈县| 宁乡县| 新乡市| 郯城县| 灵璧县| 灌南县| 伊吾县| 黔东| 镇巴县| 河池市| 山东省| 绍兴市| 西青区| 法库县| 兴海县| 沁阳市| 个旧市| 长泰县| 长武县| 郓城县| 基隆市| 宜章县| 赤城县| 利辛县| 天峨县| 志丹县| 镇原县| 建昌县| 定南县| 新安县| 漳浦县| 屏南县|