找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Spectral Synthesis and Its Applications; László Székelyhidi Book 2006 Springer Science+Business Media B.V. 2006 Abelian group.bra

[復(fù)制鏈接]
樓主: ergonomics
21#
發(fā)表于 2025-3-25 04:18:51 | 只看該作者
https://doi.org/10.1007/978-1-4612-2798-4bles. If for any nonnegative integer . the symbol . denotes the set of all elements . in . for which the degree of . is not greater than ., then we suppose that the polynomials . with . in . form a basis for all polynomials of degree not greater than ..
22#
發(fā)表于 2025-3-25 08:57:44 | 只看該作者
23#
發(fā)表于 2025-3-25 13:40:50 | 只看該作者
24#
發(fā)表于 2025-3-25 19:13:35 | 只看該作者
25#
發(fā)表于 2025-3-25 23:35:54 | 只看該作者
Book 2006ons, polynomial ideals, digital filtering and polynomial hypergroups is required. This book covers several different problems in this field and is unique in being the only comprehensive coverage of this topic. It should appeal to graduate students and researchers in harmonic analysis, spectral analysis, functional equations and hypergroups..
26#
發(fā)表于 2025-3-26 00:44:52 | 只看該作者
László SzékelyhidiUnified treatment of several different problems.Wide range exposition of discrete spectral synthesis.Original and effective applications of discrete spectral synthesis in different fields.There is no
27#
發(fā)表于 2025-3-26 05:45:01 | 只看該作者
28#
發(fā)表于 2025-3-26 09:22:40 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:10 | 只看該作者
Tumors of the Pelvis: Pathologic AspectLet . be an Abelian group. We say that . is a . if every element of . has finite order. In other words, for every . in . there exists a positive integer . with . = 0. Hence . is not a torsion group if and only if there exists an element of . which generates a subgroup isomorphic to ?.
30#
發(fā)表于 2025-3-26 17:34:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桑日县| 舟曲县| 阜康市| 怀仁县| 麟游县| 湖北省| 江山市| 五华县| 乐昌市| 哈巴河县| 荥经县| 昌吉市| 永胜县| 保靖县| 扎兰屯市| 明光市| 监利县| 耒阳市| 衢州市| 漠河县| 额济纳旗| 沁水县| 贞丰县| 织金县| 济阳县| 固镇县| 商丘市| 黄石市| 漳州市| 昌都县| 突泉县| 博白县| 临桂县| 新竹市| 革吉县| 阳曲县| 全州县| 晋宁县| 东乌珠穆沁旗| 凭祥市| 明星|