找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Probability and Algorithms; David Aldous,Persi Diaconis,J. Michael Steele Conference proceedings 1995 Springer Science+Business M

[復制鏈接]
樓主: CANTO
21#
發(fā)表于 2025-3-25 06:11:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:27:55 | 只看該作者
https://doi.org/10.1007/978-1-4612-0801-3Markov chain; Probability theory; algorithms; combinatorics; network; random walk; sets
24#
發(fā)表于 2025-3-25 17:00:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:21:00 | 只看該作者
Three Examples of Monte-Carlo Markov Chains: At the Interface Between Statistical Computing, Computevaluation of maximum likelihood is compared with work on evaluation of the partition function. Finally, work of Diaconis-Sturmfels on conditional inference is complemented by the work of theoretical computer scientists on approximate computation of the volume of convex polyhedra.
26#
發(fā)表于 2025-3-26 02:36:58 | 只看該作者
,Randomised Approximation Schemes for Tutte-Gr?thendieck Invariants,ven for the very restricted class of planar bipartite graphs. However the question of which points have a fully polynomial randomised approximation scheme is wide open. I shall discuss this problem and give a survey of what is currently known.
27#
發(fā)表于 2025-3-26 05:58:15 | 只看該作者
0940-6573 ership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world‘s leading experts in the field.
28#
發(fā)表于 2025-3-26 10:21:32 | 只看該作者
Brain Stimulation for Pain Controle, as usual, the cut determined by ., i.e., the set of all edges of . with an end in . and an end in its complement .. Define . and observe that .(.) is simply the expected number of edges of . that lie in the cut (.,). In this note we prove the following.
29#
發(fā)表于 2025-3-26 14:30:43 | 只看該作者
30#
發(fā)表于 2025-3-26 18:45:57 | 只看該作者
0940-6573 of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance..978-1-4612-6905-2978-1-4612-0801-3Series ISSN 0940-6573 Series E-ISSN 2198-3224
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
屏山县| 呼图壁县| 鹤岗市| 犍为县| 宁海县| 泰顺县| 柳河县| 内江市| 福海县| 普兰店市| 东山县| 岳西县| 阳高县| 大丰市| 公主岭市| 浑源县| 罗定市| 乌拉特前旗| 石阡县| 曲水县| 望城县| 湘阴县| 留坝县| 克东县| 大洼县| 犍为县| 郴州市| 蕲春县| 固镇县| 玉田县| 仲巴县| 乐亭县| 乌拉特后旗| 昭苏县| 苏尼特右旗| 正镶白旗| 福建省| 清新县| 屏山县| 渝北区| 玛沁县|