找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 19th IAPR Internatio Nicolas Normand,Jeanpierre Guédon,Florent Autrusse Conference proceedings 2016

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:21:34 | 只看該作者
A Comparison of Some Methods for Direct 2D Reconstruction from Discrete Projected Viewsnverse for such transforms. We assemble a limited set of measurements and then apply the inversion to obtain a high-fidelity image of the original object. In this work, we compare the following direct inversion techniques for sets of discrete projections: Radon-i(inverse)Radon, a least squared error
32#
發(fā)表于 2025-3-27 01:15:46 | 只看該作者
33#
發(fā)表于 2025-3-27 06:59:40 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:30 | 只看該作者
Shape Classification According to LBP Persistence of Critical Pointseleton are determined first. The shape is described according to persistence of the local topology at these critical points over a range of scales. The local topology over scale-space is derived using the local binary pattern texture operator with varying radii. To visualise the descriptor, a new ty
35#
發(fā)表于 2025-3-27 17:20:20 | 只看該作者
36#
發(fā)表于 2025-3-27 19:18:37 | 只看該作者
37#
發(fā)表于 2025-3-28 00:06:54 | 只看該作者
Nicolas Normand,Jeanpierre Guédon,Florent Autrusse
38#
發(fā)表于 2025-3-28 02:56:07 | 只看該作者
A Tomographical Interpretation of a Sufficient Condition on ,-Graphical Sequencesoblem under a tomographical perspective by adapting an already known reconstruction algorithm that has been defined for regular .-uniform degree sequences to the proposed instances, providing efficiency to the sufficient condition. Furthermore, we extend the set of .-uniform degree sequences whose g
39#
發(fā)表于 2025-3-28 10:20:25 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:33 | 只看該作者
Conference proceedings 2016Nantes,France, in April 2016.?.The 32 revised full papers presented together with 2invited talks were carefully selected from 51 submissions. The papers areorganized in topical sections on combinatorial tools; discretization; discretetomography; discrete and combinatorial topology; shape descriptors
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 08:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昆山市| 左云县| 内江市| 道真| 木里| 阿克苏市| 吉木萨尔县| 磐石市| 同心县| 玛曲县| 延安市| 淮阳县| 陆良县| 苍南县| 红桥区| 永昌县| 河西区| 大悟县| 健康| 郑州市| 景东| 鄱阳县| 香河县| 凯里市| 寿阳县| 南召县| 通化县| 文成县| 临汾市| 洞头县| 明溪县| 乐都县| 湾仔区| 台北市| 汉源县| 镇坪县| 唐海县| 沁源县| 淮北市| 庆云县| 永顺县|