找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 19th IAPR Internatio Nicolas Normand,Jeanpierre Guédon,Florent Autrusse Conference proceedings 2016

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:21:34 | 只看該作者
A Comparison of Some Methods for Direct 2D Reconstruction from Discrete Projected Viewsnverse for such transforms. We assemble a limited set of measurements and then apply the inversion to obtain a high-fidelity image of the original object. In this work, we compare the following direct inversion techniques for sets of discrete projections: Radon-i(inverse)Radon, a least squared error
32#
發(fā)表于 2025-3-27 01:15:46 | 只看該作者
33#
發(fā)表于 2025-3-27 06:59:40 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:30 | 只看該作者
Shape Classification According to LBP Persistence of Critical Pointseleton are determined first. The shape is described according to persistence of the local topology at these critical points over a range of scales. The local topology over scale-space is derived using the local binary pattern texture operator with varying radii. To visualise the descriptor, a new ty
35#
發(fā)表于 2025-3-27 17:20:20 | 只看該作者
36#
發(fā)表于 2025-3-27 19:18:37 | 只看該作者
37#
發(fā)表于 2025-3-28 00:06:54 | 只看該作者
Nicolas Normand,Jeanpierre Guédon,Florent Autrusse
38#
發(fā)表于 2025-3-28 02:56:07 | 只看該作者
A Tomographical Interpretation of a Sufficient Condition on ,-Graphical Sequencesoblem under a tomographical perspective by adapting an already known reconstruction algorithm that has been defined for regular .-uniform degree sequences to the proposed instances, providing efficiency to the sufficient condition. Furthermore, we extend the set of .-uniform degree sequences whose g
39#
發(fā)表于 2025-3-28 10:20:25 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:33 | 只看該作者
Conference proceedings 2016Nantes,France, in April 2016.?.The 32 revised full papers presented together with 2invited talks were carefully selected from 51 submissions. The papers areorganized in topical sections on combinatorial tools; discretization; discretetomography; discrete and combinatorial topology; shape descriptors
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 08:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
礼泉县| 大竹县| 昔阳县| 紫金县| 昌江| 凉城县| 天门市| 毕节市| 股票| 大石桥市| 泰宁县| 汶上县| 朝阳县| 油尖旺区| 博野县| 改则县| 康定县| 宝丰县| 平陆县| 巩留县| 龙州县| 平顶山市| 嘉鱼县| 老河口市| 南江县| 遂川县| 孝义市| 忻州市| 大名县| 清流县| 松江区| 龙岩市| 广饶县| 金坛市| 无极县| 岳普湖县| 屏山县| 景谷| 夹江县| 平顶山市| 浮山县|