找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 13th International C Attila Kuba,László G. Nyúl,Kálmán Palágyi Conference proceedings 2006 Springer

[復(fù)制鏈接]
樓主: cerebral-cortex
11#
發(fā)表于 2025-3-23 10:57:50 | 只看該作者
Reconstruction Algorithm and Switching Graph for Two-Projection Tomography with Prohibited Subregiongorithm gives a solution. We then study the relation of the switching graph for the solution sets with and without the prohibited region. Finally, we apply our idea to get a better reconstruction figure imposing prohibited region artificially.
12#
發(fā)表于 2025-3-23 15:18:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:12:30 | 只看該作者
Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformate resulting angle sets are an alternative to those derived using the Farey fractions from number theory. The Farey angles arise naturally through the definitions of the Mojette and Finite Radon Transforms. Often a subset of the Farey angles needs to be selected when reconstructing images from a limi
14#
發(fā)表于 2025-3-23 22:51:45 | 只看該作者
A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography problems, this tomography problem involves thousands of variables. Applicability and performance of discrete tomography therefore largely depend on the criteria used for reconstruction and the optimization algorithm applied. From this viewpoint, we evaluate two major optimization strategies, simula
15#
發(fā)表于 2025-3-24 03:38:31 | 只看該作者
16#
發(fā)表于 2025-3-24 09:08:01 | 只看該作者
Minimal Non-simple and Minimal Non-cosimple Sets in Binary Images on Cell Complexesent” and “26-simple” 1 in binary images on the 3-cells of a 3D cubical complex; the concepts of . and . 1 are generalizations of the concepts of “6-component” and “6-simple” 1. Over the past 20 years, the problems of determining just which sets of 1’s can be minimal non-simple, just which sets can b
17#
發(fā)表于 2025-3-24 12:10:07 | 只看該作者
Reusing Integer Homology Information of Binary Digital Images. For doing this, the homology of the object is encoded in an algebraic-topological format (that we call AM-model). Moreover, in the case of 3D binary digital images, having as input AM-models for the images . and ., we design fast algorithms for computing the integer homology of . ∪., . ∩. and . ?.
18#
發(fā)表于 2025-3-24 17:36:29 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:33:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 花莲县| 高碑店市| 禄劝| 富川| 吴忠市| 库车县| 花莲市| 凤庆县| 竹山县| 新化县| 广汉市| 从化市| 大丰市| 长泰县| 嘉兴市| 南投县| 博湖县| 青田县| 静海县| 易门县| 女性| 株洲县| 昔阳县| 武胜县| 郯城县| 梨树县| 清远市| 镇原县| 奉新县| 石泉县| 吉林省| 奎屯市| 文化| 泰顺县| 肥东县| 五原县| 新源县| 西乡县| 罗城| 西盟|