找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 9th International Co Gunilla Borgefors,Ingela Nystr?m,Gabriella Sanniti Conference proceedings 2000

[復(fù)制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 12:54:58 | 只看該作者
12#
發(fā)表于 2025-3-23 17:33:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:44:03 | 只看該作者
https://doi.org/10.1007/978-3-031-39719-6e a new approach in the framework of orders. We introduce the tesselation by connection, which is a transformation that preserves the connectivity, andcan be implemented by a parallel algorithm. We prove that this transformation possesses goodg eometrical properties. The extension of this transforma
14#
發(fā)表于 2025-3-24 01:55:10 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:18 | 只看該作者
16#
發(fā)表于 2025-3-24 09:30:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:27 | 只看該作者
Soichi Omori,Tetsuya Komabayashid as finite cell complexes. The paper contains definitions and a theorem necessary to transfer some basic knowledge of the classical topology to finite topological spaces. The method is based on subdividing the given set into blocks of simple cells in such a way, that a .-dimensional block be homeom
18#
發(fā)表于 2025-3-24 17:24:51 | 只看該作者
Superplumes: Beyond Plate Tectonicsproximity space. It is this notion, together with “nearness preserving mappings”, that we investigate in this paper. We first review basic examples as they naturally occur in digital topologies, making also brief comparison studies with other concepts in digital geometry. After this we characterize
19#
發(fā)表于 2025-3-24 19:18:14 | 只看該作者
Soichi Omori,Tetsuya Komabayashientrate on structuring elements in the formo f discrete line segments, including periodic lines. We investigate fast algorithms, decomposition/cascade schemes, and translation invariance issues. Several application examples are provided.
20#
發(fā)表于 2025-3-25 02:42:56 | 只看該作者
Britain and Britishness at the Crossroads, we give some decidable and undecidable properties concerning Hausdorff discretizations of algebraic sets and we prove that some Hausdorff discretizations of algebraic sets are diophantine sets. We refine the last results for algebraic curves and more precisely for straight lines.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大理市| 榆中县| 封丘县| 鹿泉市| 习水县| 和龙市| 紫金县| 屏山县| 曲周县| 新民市| 射阳县| 响水县| 阳城县| 连南| 甘孜| 平乐县| 余干县| 汤阴县| 图们市| 兴国县| 惠安县| 若尔盖县| 贺兰县| 牡丹江市| 贡觉县| 龙南县| 三亚市| 柳河县| 会理县| 射阳县| 和龙市| 微山县| 济南市| 德安县| 平顶山市| 泾川县| 乌什县| 屯留县| 澎湖县| 大港区| 西昌市|