找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 6th International Wo Serge Miguet,Annick Montanvert,Stéphane Ubéda Conference proceedings 1996 Spri

[復(fù)制鏈接]
樓主: misperceive
51#
發(fā)表于 2025-3-30 08:29:48 | 只看該作者
Fractal representation of planar shapes,of initial contours, it reconstructs original objects with a high precision. This construction enables fast scalings and rotations of planar individual objects by simple algebraic operations on the fractal representation. Significant compression of data volume was obtained for shape representation.
52#
發(fā)表于 2025-3-30 14:54:47 | 只看該作者
53#
發(fā)表于 2025-3-30 17:23:02 | 只看該作者
54#
發(fā)表于 2025-3-30 22:52:36 | 只看該作者
55#
發(fā)表于 2025-3-31 04:11:41 | 只看該作者
56#
發(fā)表于 2025-3-31 07:04:40 | 只看該作者
57#
發(fā)表于 2025-3-31 12:30:47 | 只看該作者
https://doi.org/10.1007/978-3-662-49170-6ous drawbacks, as they distort the shape significantly. In OR-pyramids black pixels spread all over the array due to expansion and merging of close regions. The shape of the original pattern is rapidly blurred. In AND-pyramids narrow regions of the initial pattern may either completely vanish or bec
58#
發(fā)表于 2025-3-31 13:41:27 | 只看該作者
59#
發(fā)表于 2025-3-31 19:12:32 | 只看該作者
Regina M. Hansen,Susan A. Georgeeters. Elementary components of discrete surfaces, called surfels, contain some geometric information, but at a scale that is too small with respect to the scale at which we actually want to describe objects. We present here a fast computational technique to compute the normal vector field of a disc
60#
發(fā)表于 2025-4-1 00:47:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁德市| 陆川县| 揭东县| 南澳县| 澄江县| 开封市| 朔州市| 石狮市| 樟树市| 长宁区| 罗源县| 滨海县| 西盟| 贵定县| 万盛区| 海城市| 潞城市| 墨玉县| 四会市| 河北省| 道孚县| 亳州市| 顺义区| 增城市| 杂多县| 湖北省| 金溪县| 出国| 湘乡市| 鸡泽县| 琼中| 上栗县| 金昌市| 杭锦后旗| 涞源县| 武邑县| 萍乡市| 望城县| 美姑县| 正定县| 方城县|