找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Mathematical Morphology; Second International étienne Baudrier,Beno?t Naegel,Mohamed Tajine Conference proceedings 20

[復制鏈接]
查看: 21079|回復: 53
樓主
發(fā)表于 2025-3-21 18:42:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Discrete Geometry and Mathematical Morphology
副標題Second International
編輯étienne Baudrier,Beno?t Naegel,Mohamed Tajine
視頻videohttp://file.papertrans.cn/282/281111/281111.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Discrete Geometry and Mathematical Morphology; Second International étienne Baudrier,Beno?t Naegel,Mohamed Tajine Conference proceedings 20
描述This book constitutes the proceedings of the Second IAPR International Conference on Discrete Geometry and Mathematical Morphology, DGMM 2022, which was held during October 24-27, 2022, in Strasbourg, France..The 33 papers included in this volume were carefully reviewed and selected from 45 submissions. They were organized in topical sections as follows: discrete and combinatorial topology; discrete tomography and inverse problems; multivariate and PDE-based mathematical morphology, morphological filtering; hierarchical and Graph-Based Models, Analysis and Segmentation; discrete geometry - models, transforms, and visualization; learning based morphology to Mathematical Morphology; and distance transform...The book also contains 3 invited keynote papers. .
出版日期Conference proceedings 2022
關鍵詞artificial intelligence; computer systems; computer vision; correlation analysis; geometry; graph theory;
版次1
doihttps://doi.org/10.1007/978-3-031-19897-7
isbn_softcover978-3-031-19896-0
isbn_ebook978-3-031-19897-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Discrete Geometry and Mathematical Morphology影響因子(影響力)




書目名稱Discrete Geometry and Mathematical Morphology影響因子(影響力)學科排名




書目名稱Discrete Geometry and Mathematical Morphology網絡公開度




書目名稱Discrete Geometry and Mathematical Morphology網絡公開度學科排名




書目名稱Discrete Geometry and Mathematical Morphology被引頻次




書目名稱Discrete Geometry and Mathematical Morphology被引頻次學科排名




書目名稱Discrete Geometry and Mathematical Morphology年度引用




書目名稱Discrete Geometry and Mathematical Morphology年度引用學科排名




書目名稱Discrete Geometry and Mathematical Morphology讀者反饋




書目名稱Discrete Geometry and Mathematical Morphology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:57:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:19:56 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/e/image/281111.jpg
地板
發(fā)表于 2025-3-22 04:50:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:36:32 | 只看該作者
Digital Geometry, Mathematical Morphology, and?Discrete Optimization: A SurveyWe study difficulties that appear when well-established definitions and results in Euclidean geometry, especially in the theory of convex sets and functions in vector spaces, are translated into a discrete setting. Solutions to these problems are sketched.
6#
發(fā)表于 2025-3-22 14:22:45 | 只看該作者
7#
發(fā)表于 2025-3-22 20:43:00 | 只看該作者
8#
發(fā)表于 2025-3-22 22:13:04 | 只看該作者
,Die Genesis der Uranlagerst?tten,sentation and reasoning, offers opportunities towards explainability. This idea is illustrated on the example of image understanding, in particular in medical imaging, formulated as a spatial reasoning problem.
9#
發(fā)表于 2025-3-23 03:28:04 | 只看該作者
10#
發(fā)表于 2025-3-23 05:37:38 | 只看該作者
,Die Genesis der Uranlagerst?tten,sentation and reasoning, offers opportunities towards explainability. This idea is illustrated on the example of image understanding, in particular in medical imaging, formulated as a spatial reasoning problem.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 11:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凭祥市| 桂平市| 简阳市| 建瓯市| 大丰市| 石城县| 东阳市| 沐川县| 洪泽县| 响水县| 修水县| 广南县| 恭城| 达孜县| 长兴县| 汤阴县| 龙南县| 霍邱县| 济南市| 吉林省| 莱阳市| 曲沃县| 黄浦区| 佛教| 滦南县| 马边| 越西县| 宜春市| 石城县| 张家川| 林周县| 邓州市| 清徐县| 贵港市| 财经| 临泉县| 德钦县| 呼玛县| 鄯善县| 博爱县| 临澧县|