找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Mathematical Morphology; Third International Sara Brunetti,Andrea Frosini,Simone Rinaldi Conference proceedings 2024

[復(fù)制鏈接]
樓主: whiplash
51#
發(fā)表于 2025-3-30 09:30:01 | 只看該作者
Chapter 7: Ajahn Chah Gives a Teachingd rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective, our 3D digitized rotation inherits the same property. Experiments show that the average error of our digitized rotation compared to the continuous one is kept under 1 (around 0.8).
52#
發(fā)表于 2025-3-30 13:57:35 | 只看該作者
53#
發(fā)表于 2025-3-30 18:24:18 | 只看該作者
Bijectivity Analysis of?Finite Rotations on?,: A?Hierarchical Approach hinge angles) and the size of the considered ball. We propose efficient algorithmic schemes leading to the construction of combinatorial models (trees) of the bijective finite rotations. These algorithms and structures open the way to a better understanding of the notion of bijectivity with respect to finite vs. infinite discrete rotations.
54#
發(fā)表于 2025-3-30 21:14:29 | 只看該作者
Bijective Digitized 3D Rotation Based on?Beam Shearsd rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective, our 3D digitized rotation inherits the same property. Experiments show that the average error of our digitized rotation compared to the continuous one is kept under 1 (around 0.8).
55#
發(fā)表于 2025-3-31 01:50:16 | 只看該作者
56#
發(fā)表于 2025-3-31 05:46:01 | 只看該作者
57#
發(fā)表于 2025-3-31 12:32:06 | 只看該作者
58#
發(fā)表于 2025-3-31 15:41:50 | 只看該作者
https://doi.org/10.1007/978-3-642-73875-3which guarantees the equality if the musical pattern satisfies a topological condition. This condition is met when the patterns do not intersect, or only slightly, which is coherent in a musical context. Due to the importance of repetition in music, this idea proves to be relevant for the musical pattern discovery task.
59#
發(fā)表于 2025-3-31 18:20:12 | 只看該作者
Plato killed a moth in my dream by the branch of the Stern-Brocot tree. This generalisation shows the close link between arithmetic hyperplanes and the generalised Stern-Brocot tree and opens up interesting perspectives for the recognition of pieces of arithmetic hyperplanes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凭祥市| 娄烦县| 永吉县| 富裕县| 耒阳市| 石屏县| 始兴县| 高要市| 乌兰浩特市| 安泽县| 阿鲁科尔沁旗| 定州市| 侯马市| 邯郸市| 靖安县| 鸡泽县| 凌云县| 库尔勒市| 北票市| 左贡县| 措勤县| 平江县| 博爱县| 乡宁县| 蓝山县| 兴海县| 卢氏县| 绿春县| 景宁| 三河市| 西乌珠穆沁旗| 阿尔山市| 扶余县| 乌兰县| 本溪| 府谷县| 淮南市| 新晃| 湘西| 嘉黎县| 遂昌县|