找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Energy on Rectifiable Sets; Sergiy V. Borodachov,Douglas P. Hardin,Edward B. S Book 2019 Springer Science+Business Media, LLC, pa

[復(fù)制鏈接]
樓主: Neogamist
41#
發(fā)表于 2025-3-28 17:48:06 | 只看該作者
https://doi.org/10.1007/978-94-011-0391-6e weak.-limit distribution of sequences of energy minimizing configurations and lower estimates of their minimal pairwise separation can be also found here. Finally, a class of sequences of asymptotically .-energy minimizing configurations is constructed for sets of positive .-dimensional Lebesgue measure.
42#
發(fā)表于 2025-3-28 21:28:59 | 只看該作者
43#
發(fā)表于 2025-3-29 02:49:25 | 只看該作者
Springer Science+Business Media, LLC, part of Springer Nature 2019
44#
發(fā)表于 2025-3-29 05:16:09 | 只看該作者
Asymptotics for Energy Minimizing Configurations on ,n of the property of uniform distribution on the sphere of a sequence of .-point configurations and provide necessary and sufficient conditions for such uniformity in terms of the notion of discrepancy.
45#
發(fā)表于 2025-3-29 10:33:36 | 只看該作者
,Minimal Energy Asymptotics in the “Harmonic Series” Case,e weak.-limit distribution of sequences of energy minimizing configurations and lower estimates of their minimal pairwise separation can be also found here. Finally, a class of sequences of asymptotically .-energy minimizing configurations is constructed for sets of positive .-dimensional Lebesgue measure.
46#
發(fā)表于 2025-3-29 12:09:02 | 只看該作者
Book 2019cluding an extensive treatment of Delsarte–Yudin–Levenshtein linearprogramming methods for lower bounding energy, a thorough treatment of Cohn–Kumar universality, and a comparison of ‘popular methods‘ for uniformly distributing points on the two-dimensional sphere. Some unique features of the work a
47#
發(fā)表于 2025-3-29 19:35:40 | 只看該作者
48#
發(fā)表于 2025-3-29 21:33:52 | 只看該作者
49#
發(fā)表于 2025-3-29 23:54:43 | 只看該作者
50#
發(fā)表于 2025-3-30 06:29:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秭归县| 闵行区| 石台县| 新津县| 上虞市| 长沙县| 玉门市| 阜阳市| 金门县| 清流县| 大关县| 府谷县| 深水埗区| 商都县| 平湖市| 博野县| 松江区| 腾冲县| 万宁市| 庐江县| 读书| 临桂县| 泰来县| 波密县| 鹤壁市| 海盐县| 新丰县| 阿拉善左旗| 宜兰市| 揭东县| 河西区| 濮阳市| 宜都市| 六枝特区| 依安县| 兴隆县| 永安市| 南康市| 南昌县| 依兰县| 舟山市|