找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrepancy of Signed Measures and Polynomial Approximation; Vladimir V. Andrievskii,Hans-Peter Blatt Book 2002 Springer Science+Business

[復制鏈接]
樓主: 歸納
11#
發(fā)表于 2025-3-23 10:15:54 | 只看該作者
Book 2002with respect to the angular measure. In 1929 Bernstein [27] stated the following theorem. Let f be a positive continuous function on [-1, 1]; if almost all zeros of the polynomials of best 2 approximation to f (in a weighted L -norm) are outside of an open ellipse c with foci at -1 and 1, then f has
12#
發(fā)表于 2025-3-23 14:34:25 | 只看該作者
Praktische Verfahren und Rezepte,ce .. := {.: |.| = .} is a limit point of zeros of polynomials ..(.), . = 1, 2,... . Szeg? [170] substantially improved this result by showing that there is a subsequence .% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharq
13#
發(fā)表于 2025-3-23 20:48:54 | 只看該作者
Discrepancy of Signed Measures and Polynomial Approximation
14#
發(fā)表于 2025-3-23 22:40:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:55:26 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:20 | 只看該作者
Discrepancy Theorems via One-Sided Bounds for Potentials,urve or arc .. The basic quantities involved have been the two terms . and . where .. ∈ int . is fixed if . is a curve. In Section 2.3 we have outlined that it is possible to restrict the essential quantities to the .. in the case of a Jordan arc. If . is a curve, we replace .. by the smaller .. whe
17#
發(fā)表于 2025-3-24 13:41:49 | 只看該作者
18#
發(fā)表于 2025-3-24 16:25:09 | 只看該作者
Applications of Discrepancy Theorems,sets . of ?. It is known that the counting measures for Fekete point sets converge to the equilibrium distribution of .. Furthermore, if . is a Jordan curve or arc, then this weak*-convergence can be estimated by discrepancy bounds. For analytic Jordan curves Pommerenke [144, 145] has proved sharp a
19#
發(fā)表于 2025-3-24 20:52:31 | 只看該作者
20#
發(fā)表于 2025-3-24 23:45:30 | 只看該作者
978-1-4419-3146-7Springer Science+Business Media New York 2002
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 00:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台江县| 江山市| 陆丰市| 峡江县| 宜兴市| 文昌市| 新建县| 始兴县| 金塔县| 汝州市| 海晏县| 滨海县| 汨罗市| 崇左市| 江孜县| 格尔木市| 龙江县| 额尔古纳市| 花垣县| 长沙县| 云阳县| 龙山县| 讷河市| 昌吉市| 泸西县| 昭觉县| 交城县| 临洮县| 多伦县| 独山县| 常德市| 陕西省| 团风县| 同江市| 兴仁县| 灵璧县| 绥宁县| 光山县| 马龙县| 西盟| 东辽县|