找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discovery Science; 22nd International C Petra Kralj Novak,Tomislav ?muc,Sa?o D?eroski Conference proceedings 2019 Springer Nature Switzerla

[復(fù)制鏈接]
查看: 53291|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:47:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Discovery Science
副標(biāo)題22nd International C
編輯Petra Kralj Novak,Tomislav ?muc,Sa?o D?eroski
視頻videohttp://file.papertrans.cn/282/281057/281057.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Discovery Science; 22nd International C Petra Kralj Novak,Tomislav ?muc,Sa?o D?eroski Conference proceedings 2019 Springer Nature Switzerla
描述.This book constitutes the proceedings of the 22nd International Conference on Discovery Science, DS 2019, held in Split, Coratia, in October 2019...The 21 full and 19 short papers presented together with 3 abstracts of invited talks in this volume were carefully reviewed and selected from 63 submissions. The scope of the conference includes the development and analysis of methods for discovering scientific knowledge, coming from machine learning, data mining, intelligent data analysis, big data analysis as well as their application in various scientific domains. The papers are organized in the following topical sections: Advanced Machine Learning; Applications; Data and Knowledge Representation; Feature Importance; Interpretable Machine Learning; Networks; Pattern Discovery; and Time Series..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; association rules; classification; clustering; clustering algorithms; computatio
版次1
doihttps://doi.org/10.1007/978-3-030-33778-0
isbn_softcover978-3-030-33777-3
isbn_ebook978-3-030-33778-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Discovery Science影響因子(影響力)




書目名稱Discovery Science影響因子(影響力)學(xué)科排名




書目名稱Discovery Science網(wǎng)絡(luò)公開度




書目名稱Discovery Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Discovery Science被引頻次




書目名稱Discovery Science被引頻次學(xué)科排名




書目名稱Discovery Science年度引用




書目名稱Discovery Science年度引用學(xué)科排名




書目名稱Discovery Science讀者反饋




書目名稱Discovery Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:00 | 只看該作者
Utilizing Hierarchies in Tree-Based Online Structured Output Predictionhy. We design the experimental setup to ascertain whether the additional information contained in the hierarchy can be utilized to improve the predictive performance in the leaf targets. The proposed method shows promising results, producing potential improvements that should be investigated further.
地板
發(fā)表于 2025-3-22 06:44:42 | 只看該作者
5#
發(fā)表于 2025-3-22 09:14:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:32:56 | 只看該作者
https://doi.org/10.1057/9780230510418of biclustering algorithms is proposed using FCA and pattern structures, an extension of FCA for dealing with numbers and other complex data. Several types of biclusters – constant-column, constant-row, additive, and multiplicative – and their relation to interval pattern structures is presented.
7#
發(fā)表于 2025-3-22 20:17:41 | 只看該作者
Conference proceedings 2019he 21 full and 19 short papers presented together with 3 abstracts of invited talks in this volume were carefully reviewed and selected from 63 submissions. The scope of the conference includes the development and analysis of methods for discovering scientific knowledge, coming from machine learning
8#
發(fā)表于 2025-3-22 23:51:48 | 只看該作者
A Unified Approach to Biclustering Based on Formal Concept Analysis and Interval Pattern Structureof biclustering algorithms is proposed using FCA and pattern structures, an extension of FCA for dealing with numbers and other complex data. Several types of biclusters – constant-column, constant-row, additive, and multiplicative – and their relation to interval pattern structures is presented.
9#
發(fā)表于 2025-3-23 02:02:37 | 只看該作者
10#
發(fā)表于 2025-3-23 09:01:04 | 只看該作者
A Sampling-Based Approach for Discovering Subspace Clusters is then mined for frequent itemsets, which we show can be translated back to subspace clusters. In our extensive experimental analysis, we show on synthetic as well as real world data that our method is capable of discovering highly interesting subspace clusters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴东县| 缙云县| 津南区| 来凤县| 客服| 金塔县| 宁安市| 扎兰屯市| 阜阳市| 岱山县| 抚顺市| 忻州市| 潞西市| 涪陵区| 凌海市| 宕昌县| 三门峡市| 四平市| 太康县| 镇坪县| 黑山县| 泰顺县| 太白县| 石景山区| 永州市| 瑞丽市| 合水县| 中西区| 华亭县| 微博| 精河县| 义马市| 澄迈县| 大竹县| 黑水县| 易门县| 习水县| 新龙县| 綦江县| 汉源县| 林州市|