找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discovery Science; 16th International C Johannes Fürnkranz,Eyke Hüllermeier,Tomoyuki Higuc Conference proceedings 2013 Springer-Verlag Berl

[復(fù)制鏈接]
查看: 46030|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:29:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Discovery Science
副標(biāo)題16th International C
編輯Johannes Fürnkranz,Eyke Hüllermeier,Tomoyuki Higuc
視頻videohttp://file.papertrans.cn/282/281051/281051.mp4
概述Conference proceedings of the International Conference on Discovery Science, DS 2013
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Discovery Science; 16th International C Johannes Fürnkranz,Eyke Hüllermeier,Tomoyuki Higuc Conference proceedings 2013 Springer-Verlag Berl
描述This book constitutes the proceedings of the 16th International Conference on Discovery Science, DS 2013, held in Singapore in October 2013, and co-located with the International Conference on Algorithmic Learning Theory, ALT 2013. The 23 papers presented in this volume were carefully reviewed and selected from 52 submissions. They cover recent advances in the development and analysis of methods of automatic scientific knowledge discovery, machine learning, intelligent data analysis, and their application to knowledge discovery.
出版日期Conference proceedings 2013
關(guān)鍵詞constraint-based clustering; domain ontology; hypernetworks; semantic data mining; structure learning; al
版次1
doihttps://doi.org/10.1007/978-3-642-40897-7
isbn_softcover978-3-642-40896-0
isbn_ebook978-3-642-40897-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書(shū)目名稱Discovery Science影響因子(影響力)




書(shū)目名稱Discovery Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Discovery Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Discovery Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Discovery Science被引頻次




書(shū)目名稱Discovery Science被引頻次學(xué)科排名




書(shū)目名稱Discovery Science年度引用




書(shū)目名稱Discovery Science年度引用學(xué)科排名




書(shū)目名稱Discovery Science讀者反饋




書(shū)目名稱Discovery Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:34 | 只看該作者
Model Tree Ensembles for Modeling Dynamic Systems,ally converted into a classical regression problem, which can then be solved with any nonlinear regression approach. As tree ensembles are a very successful predictive modelling approach, we investigate the use of tree ensembles for regression for this task..While ensembles of regression trees have
板凳
發(fā)表于 2025-3-22 03:07:45 | 只看該作者
Fast and Scalable Image Retrieval Using Predictive Clustering Trees,ficient and accurate systems for image retrieval. State-of-the-art systems for image retrieval use the bag-of-visual-words representation of the images. However, the computational bottleneck in all such systems is the construction of the visual vocabulary (i.e., how to obtain the visual words). This
地板
發(fā)表于 2025-3-22 06:03:47 | 只看該作者
Avoiding Anomalies in Data Stream Learning, refer to data cleaning as a pre-processing before the learning task. The problem of data cleaning is exacerbated when learning in the computational model of data streams. In this paper we present a streaming algorithm for learning classification rules able to detect contextual anomalies in the data
5#
發(fā)表于 2025-3-22 09:16:38 | 只看該作者
Generalizing from Example Clusters,t with the given clusters. This is essentially a semi-supervised clustering problem, but it differs from previously studied semi-supervised clustering settings in significant ways. Earlier work has shown that none of the existing methods for semi-supervised clustering handle this problem well. We id
6#
發(fā)表于 2025-3-22 16:18:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:10 | 只看該作者
8#
發(fā)表于 2025-3-23 01:08:42 | 只看該作者
A New Approach to String Pattern Mining with Approximate Match,ring data analysis on strings such as texts, word sequences, and genome sequences. The problem becomes difficult if the string patterns are allowed to match approximately, i.e., a fixed number of errors leads to an explosion in the number of small solutions, and a fixed ratio of errors violates the
9#
發(fā)表于 2025-3-23 04:46:03 | 只看該作者
OntoDM-KDD: Ontology for Representing the Knowledge Discovery Process,-KDD defines the most essential entities for describing data mining investigations in the context of KD in a two-layered ontological structure. The ontology is aligned and reuses state-of-the-art resources for representing scientific investigations, such as Information Artifact Ontology (IAO) and On
10#
發(fā)表于 2025-3-23 09:35:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普安县| 盐边县| 南昌县| 仙游县| 海伦市| 西丰县| 合山市| 南岸区| 普安县| 富阳市| 营口市| 乌什县| 普安县| 衡水市| 清镇市| 徐闻县| 满城县| 台山市| 武安市| 邵东县| 玛曲县| 凤凰县| 天津市| 马山县| 辽阳县| 内乡县| 霍城县| 黑龙江省| 青河县| 灌南县| 横峰县| 乌苏市| 青河县| 嘉峪关市| 长沙市| 皋兰县| 禄劝| 榆树市| 六安市| 绵竹市| 酒泉市|