找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discovery Science; 9th International Co Ljup?o Todorovski,Nada Lavra?,Klaus P. Jantke Conference proceedings 2006 Springer-Verlag Berlin He

[復(fù)制鏈接]
樓主: bile-acids
51#
發(fā)表于 2025-3-30 11:48:40 | 只看該作者
https://doi.org/10.1007/978-3-662-45069-7ost popular team sport in the world, attracts attention of researchers in knowledge discovery and data mining and its related areas. Domain knowledge is mandatory in such applications but acquiring domain knowledge of soccer from experts is a laborious task. Moreover such domain knowledge is typical
52#
發(fā)表于 2025-3-30 13:20:28 | 只看該作者
53#
發(fā)表于 2025-3-30 18:27:29 | 只看該作者
54#
發(fā)表于 2025-3-31 00:24:37 | 只看該作者
Untersuchungen im Modellma?stabs followed by an event .. Then, by formulating the . and the . of sectorial episodes, in this paper, we design the algorithm . to extract all of the . from a given event sequence by traversing it just once. Finally, by applying the algorithm . to bacterial culture data, we extract sectorial episodes representing ..
55#
發(fā)表于 2025-3-31 02:18:12 | 只看該作者
56#
發(fā)表于 2025-3-31 05:18:19 | 只看該作者
e-Science and the Semantic Web: A Symbiotic Relationshipfrastructure that enables this. Scientific progress increasingly depends on pooling know-how and results; making connections between ideas, people, and data; and finding and reusing knowledge and resources generated by others in perhaps unintended ways. It is about harvesting and harnessing the “col
57#
發(fā)表于 2025-3-31 13:12:47 | 只看該作者
Data-Driven Discovery Using Probabilistic Hidden Variable Modelsative approach include (a) representing complex stochastic phenomena using the structured language of graphical models, (b) using latent (hidden) variables to make inferences about unobserved phenomena, and (c) leveraging Bayesian ideas for learning and prediction. This talk will begin with a brief
58#
發(fā)表于 2025-3-31 14:49:12 | 只看該作者
59#
發(fā)表于 2025-3-31 18:02:21 | 只看該作者
The Solution of Semi-Infinite Linear Programs Using Boosting-Like Methodsfinite number of variables but infinitely many linear constraints. We illustrate that such optimization problems frequently appear in machine learning and discuss several examples including maximum margin boosting, multiple kernel learning and structure learning. In the second part we review methods
60#
發(fā)表于 2025-4-1 00:08:32 | 只看該作者
Spectral Norm in Learning Theory: Some Selected Topicstrix. Since spectral norms are widely used in various other areas, we are then able to put statistical query complexity in a broader context. We briefly describe some non-trivial connections to (seemingly) different topics in learning theory, complexity theory, and cryptography. A connection to the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜城县| 莱州市| 翁源县| 宜城市| 连云港市| 苍溪县| 来凤县| 澄城县| 台东县| 曲麻莱县| 布尔津县| 商南县| 黑水县| 南平市| 桐柏县| 阳泉市| 墨江| 大英县| 定西市| 新乡县| 综艺| 阜康市| 清涧县| 桃江县| 同江市| 凌云县| 阜新| 梅河口市| 越西县| 库尔勒市| 瑞安市| 罗源县| 新化县| 彝良县| 噶尔县| 玉溪市| 屯昌县| 来宾市| 方正县| 商南县| 江永县|