找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dirty Data Processing for Machine Learning; Zhixin Qi,Hongzhi Wang,Zejiao Dong Book 2024 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 18081|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:56:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dirty Data Processing for Machine Learning
編輯Zhixin Qi,Hongzhi Wang,Zejiao Dong
視頻videohttp://file.papertrans.cn/281/280752/280752.mp4
概述Presents state-of-the-art dirty data processing techniques for use in data pre-processing.Opens promising avenues for the further study of dirty data processing.Offers valuable take-away suggestions o
圖書封面Titlebook: Dirty Data Processing for Machine Learning;  Zhixin Qi,Hongzhi Wang,Zejiao Dong Book 2024 The Editor(s) (if applicable) and The Author(s),
描述.In both the database and machine learning communities, data quality has become a serious issue which cannot be ignored. In this context, we refer to data with quality problems as “dirty data.” Clearly, for a given data mining or machine learning task, dirty data in both training and test datasets can affect the accuracy of results. Accordingly, this book analyzes the impacts of dirty data and explores effective methods for dirty data processing...Although existing data cleaning methods improve data quality dramatically, the cleaning costs are still high. If we knew how dirty data affected the accuracy of machine learning models, we could clean data selectively according to the accuracy requirements instead of cleaning all dirty data, which entails substantial costs. However, no book to date has studied the impacts of dirty data on machine learning models in terms of data quality. Filling precisely this gap, the book is intended for a broad audience ranging from researchers inthe database and machine learning communities to industry practitioners...Readers will find valuable takeaway suggestions on: model selection and data cleaning; incomplete data classification with view-based d
出版日期Book 2024
關(guān)鍵詞Machine Learning; Feature Selection; Dirty Data; Data Quality; Decision Tree
版次1
doihttps://doi.org/10.1007/978-981-99-7657-7
isbn_softcover978-981-99-7659-1
isbn_ebook978-981-99-7657-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Dirty Data Processing for Machine Learning影響因子(影響力)




書目名稱Dirty Data Processing for Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Dirty Data Processing for Machine Learning網(wǎng)絡(luò)公開度




書目名稱Dirty Data Processing for Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dirty Data Processing for Machine Learning被引頻次




書目名稱Dirty Data Processing for Machine Learning被引頻次學(xué)科排名




書目名稱Dirty Data Processing for Machine Learning年度引用




書目名稱Dirty Data Processing for Machine Learning年度引用學(xué)科排名




書目名稱Dirty Data Processing for Machine Learning讀者反饋




書目名稱Dirty Data Processing for Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:52:18 | 只看該作者
Zhixin Qi,Hongzhi Wang,Zejiao DongPresents state-of-the-art dirty data processing techniques for use in data pre-processing.Opens promising avenues for the further study of dirty data processing.Offers valuable take-away suggestions o
地板
發(fā)表于 2025-3-22 07:56:44 | 只看該作者
http://image.papertrans.cn/e/image/280752.jpg
5#
發(fā)表于 2025-3-22 10:30:19 | 只看該作者
https://doi.org/10.1007/978-3-642-56332-4sted in various types of databases. Due to the negative impacts of dirty data on data mining and machine learning results, data quality issues have attracted widespread attention. Motivated by this, this book aims to analyze the impacts of dirty data on machine learning models and explore the proper
6#
發(fā)表于 2025-3-22 14:56:04 | 只看該作者
https://doi.org/10.1007/978-3-642-56332-4 in the selection of the proper model and data cleaning strategies. However, rare work has focused on this topic. Motivated by this, this chapter compares the impacts of missing, inconsistent, and conflicting data on basic classification and clustering models. Based on the evaluation observations, w
7#
發(fā)表于 2025-3-22 19:21:07 | 只看該作者
8#
發(fā)表于 2025-3-22 23:39:08 | 只看該作者
https://doi.org/10.1007/978-3-322-80757-1s are only able to be adopted on complete data sets, this chapter presents a generalized classification model for incomplete data in which existing classification models are easily embedded. We first generate complete views for the incomplete data based on the selection of proper attribute subsets.
9#
發(fā)表于 2025-3-23 01:50:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:14:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 01:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂昌县| 南丰县| 余江县| 屏南县| 潜江市| 龙胜| 岳普湖县| 项城市| 界首市| 高台县| 淅川县| 开江县| 吴桥县| 巴东县| 广宗县| 龙井市| 广丰县| 淮安市| 萝北县| 太保市| 长沙市| 刚察县| 南江县| 安福县| 定襄县| 类乌齐县| 内乡县| 航空| 吉木萨尔县| 清水县| 正定县| 兴和县| 青田县| 罗江县| 宝丰县| 汶川县| 武隆县| 博客| 富川| 大名县| 邯郸县|