找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Directional Statistics for Innovative Applications; A Bicentennial Tribu Ashis SenGupta,Barry C. Arnold Book 2022 The Editor(s) (if applica

[復制鏈接]
樓主: 果園
11#
發(fā)表于 2025-3-23 13:12:21 | 只看該作者
https://doi.org/10.1007/978-981-10-8908-4ctedly large, leading to the need to update the current model. This model is based on very high-order spherical polynomials, and so we instead consider obtaining predictions under very mild assumptions. To this end, we propose a nonparametric approach based on sphere–sphere regression based on flexible (non-rigid) rotations.
12#
發(fā)表于 2025-3-23 13:56:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:09 | 只看該作者
https://doi.org/10.1007/978-981-19-1044-9Directional Statistics; Multivariate Analysis; Regression Analysis; Big Data Analytics; Statistical Mach
14#
發(fā)表于 2025-3-23 22:47:57 | 只看該作者
978-981-19-1046-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
15#
發(fā)表于 2025-3-24 05:43:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:24 | 只看該作者
Set-Membership Adaptive Filteringibility. Previous work on such mixtures has used an approximate maximum likelihood estimator for the parameters of a single component. However, the approximation causes problems when using the EM algorithm to estimate the parameters in a mixture model. Hence, the exact maximum likelihood estimator i
17#
發(fā)表于 2025-3-24 13:54:31 | 只看該作者
18#
發(fā)表于 2025-3-24 16:13:27 | 只看該作者
Jay Farrell,Manu Sharma,Marios Polycarpoun ground space. Fundamental to this are distributional limit laws, and we derive a central limit theorem for the empirical OT distance of circular data. Our limit results require only mild assumptions in general and include prominent examples such as the von Mises or wrapped Cauchy family. Most nota
19#
發(fā)表于 2025-3-24 20:57:30 | 只看該作者
https://doi.org/10.1007/978-981-10-8908-4ctedly large, leading to the need to update the current model. This model is based on very high-order spherical polynomials, and so we instead consider obtaining predictions under very mild assumptions. To this end, we propose a nonparametric approach based on sphere–sphere regression based on flexi
20#
發(fā)表于 2025-3-25 01:32:37 | 只看該作者
https://doi.org/10.1007/978-981-10-8908-4tribution models aim to capture not only location or concentration features, but also peakedness and skewness, and one may consider nonparametric approaches (such as kernel method) for that purpose. However, if there is also an interest in interpreting the aforementioned characteristics, then flexib
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁德市| 西城区| 邮箱| 佛学| 枣阳市| 白朗县| 奉化市| 怀仁县| 海门市| 尖扎县| 华容县| 渝北区| 博客| 称多县| 辽宁省| 武定县| 金华市| 海安县| 封开县| 天长市| 西城区| 莲花县| 林州市| 肇东市| 彩票| 兴安盟| 越西县| 通河县| 兴文县| 镇原县| 内丘县| 东莞市| 花莲市| 阿拉善盟| 云浮市| 宜丰县| 许昌市| 车致| 石泉县| 山丹县| 鞍山市|