找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Directed Information Measures in Neuroscience; Michael Wibral,Raul Vicente,Joseph T. Lizier Book 2014 Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
查看: 41510|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:05:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Directed Information Measures in Neuroscience
編輯Michael Wibral,Raul Vicente,Joseph T. Lizier
視頻videohttp://file.papertrans.cn/281/280665/280665.mp4
概述Reflects the most recent developments in the quantification of information transfer via directed information measures.Provides the reader with the state-of-the-art concepts and tools for measuring inf
叢書名稱Understanding Complex Systems
圖書封面Titlebook: Directed Information Measures in Neuroscience;  Michael Wibral,Raul Vicente,Joseph T. Lizier Book 2014 Springer-Verlag Berlin Heidelberg 20
描述.Analysis of information transfer has found rapid adoption in neuroscience, where a highly dynamic transfer of information continuously runs on top of the brain‘s slowly-changing anatomical connectivity. Measuring such transfer is crucial to understanding how flexible information routing and processing give rise to higher cognitive function. .Directed Information Measures in Neuroscience. reviews recent developments of concepts and tools for measuring information transfer, their application to neurophysiological recordings and analysis of interactions. Written by the most active researchers in the field the book discusses the state of the art, future prospects and challenges on the way to an efficient assessment of neuronal information transfer. Highlights include the theoretical quantification and practical estimation of information transfer, description of transfer locally in space and time, multivariate directed measures, information decomposition among a set of stimulus/responses variables and the relation between interventional and observational causality. Applications to neural data sets and pointers to open source software highlight the usefulness of these measures in experi
出版日期Book 2014
關(guān)鍵詞Brain connectivity; Causality in neuroscience; EEG data; Effective connectivity; Granger causality; Infor
版次1
doihttps://doi.org/10.1007/978-3-642-54474-3
isbn_softcover978-3-662-52257-8
isbn_ebook978-3-642-54474-3Series ISSN 1860-0832 Series E-ISSN 1860-0840
issn_series 1860-0832
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書目名稱Directed Information Measures in Neuroscience影響因子(影響力)




書目名稱Directed Information Measures in Neuroscience影響因子(影響力)學(xué)科排名




書目名稱Directed Information Measures in Neuroscience網(wǎng)絡(luò)公開度




書目名稱Directed Information Measures in Neuroscience網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Directed Information Measures in Neuroscience被引頻次




書目名稱Directed Information Measures in Neuroscience被引頻次學(xué)科排名




書目名稱Directed Information Measures in Neuroscience年度引用




書目名稱Directed Information Measures in Neuroscience年度引用學(xué)科排名




書目名稱Directed Information Measures in Neuroscience讀者反饋




書目名稱Directed Information Measures in Neuroscience讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:21:41 | 只看該作者
地板
發(fā)表于 2025-3-22 07:31:51 | 只看該作者
Information Transfer in the Brain: Insights from a Unified Approachseveral methods. In this chapter we propose some approaches rooted in this framework for the analysis of neuroimaging data. First we will explore how the transfer of information depends on the network structure, showing how for hierarchical networks the information flow pattern is characterized by e
5#
發(fā)表于 2025-3-22 11:18:44 | 只看該作者
Function Follows Dynamics: State-Dependency of Directed Functional Influences causal influences between neural populations (described by the so-called .)must be reconfigurable even when the underlying structural connectivity is fixed. Such influences can be quantified through causal analysis of time-series of neural activity with tools like Transfer Entropy. But how can mani
6#
發(fā)表于 2025-3-22 16:02:37 | 只看該作者
7#
發(fā)表于 2025-3-22 19:20:25 | 只看該作者
Measuring the Dynamics of Information Processing on a Local Scale in Time and Spacet the local dynamics of such information processing in space and time can be measured. In this chapter, we review the mathematics of how to measure local entropy and mutual information values at specific observations of time-series processes.We then review how these techniques are used to construct
8#
發(fā)表于 2025-3-22 22:55:44 | 只看該作者
Parametric and Non-parametric Criteria for Causal Inference from Time-Seriesn from electrophysiological recordings. This criterion underlies the classical parametric implementation in terms of linear autoregressive processes as well as Transfer entropy, i.e. a non-parametric implementation in the framework of information theory. In the spectral domain, partial directed cohe
9#
發(fā)表于 2025-3-23 02:12:26 | 只看該作者
Einführung in das Vergütungsrechtby a variety of directed informationmeasures of which transfer entropy is themost popular, andmost principled one. This chapter presents the basic concepts behind transfer entropy in an intuitive fashion, including graphical depictions of the key concepts. It also includes a special section devoted
10#
發(fā)表于 2025-3-23 07:24:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汨罗市| 资溪县| 乐业县| 腾冲县| 新乐市| 宁陕县| 赤城县| 陕西省| 马尔康县| 专栏| 罗城| 扎兰屯市| 正蓝旗| 吉林省| 乾安县| 班玛县| 景宁| 崇左市| 茌平县| 朝阳市| 大荔县| 沅陵县| 正镶白旗| 桦南县| 都匀市| 长春市| 砀山县| 崇左市| 宕昌县| 金昌市| 电白县| 寻乌县| 静海县| 桐城市| 琼结县| 拜城县| 延庆县| 磐石市| 安国市| 松江区| 德清县|