找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct and Inverse Sturm-Liouville Problems; A Method of Solution Vladislav V. Kravchenko Book 2020 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
樓主: 歸納
11#
發(fā)表于 2025-3-23 10:57:49 | 只看該作者
Marten Deinum,Daniel Rubio,Josh Longl numbers . and . such that ..?< .. for .??0, and the relations (.) are valid. Find the real-valued potential .(.) and the real numbers . and ., such that . is the spectrum of the Sturm–Liouville problem . and .., .?=?0, 1, … are the corresponding norming constants.
12#
發(fā)表于 2025-3-23 15:29:20 | 只看該作者
Direct and Inverse Sturm-Liouville Problems978-3-030-47849-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
13#
發(fā)表于 2025-3-23 19:45:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:21 | 只看該作者
Spreading Democracy and the Rule of Law?alled the .and the quotient . is traditionally called the scattering matrix, or simply .(see, e.g., [.]). Notice that due to (.) we have that . Instead of the initial condition (.), consider the condition
15#
發(fā)表于 2025-3-24 02:48:54 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:38 | 只看該作者
Marten Deinum,Daniel Rubio,Josh Longl numbers . and . such that ..?< .. for .??0, and the relations (.) are valid. Find the real-valued potential .(.) and the real numbers . and ., such that . is the spectrum of the Sturm–Liouville problem . and .., .?=?0, 1, … are the corresponding norming constants.
17#
發(fā)表于 2025-3-24 10:47:02 | 只看該作者
https://doi.org/10.1007/978-3-662-58125-4Since the pioneering work of D. Bernoulli, J. d’Alembert, L. Euler, J. Fourier and later on of S. D. Poisson, Ch. Sturm and J. Liouville, the theory of Sturm-Liouville problems is an integral part of the professional preparation of mathematicians, physicists and engineers, and at the same time an important and actively developing research field.
18#
發(fā)表于 2025-3-24 17:14:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:56 | 只看該作者
Simulation dynamischer Systeme,Consider now the one-dimensional Schr?dinger equation on the whole real line: . where .(.) is a real-valued function defined on (?., .) and satisfies the condition . Besides the Jost solution at plus infinity, let us introduce the Jost solution at minus infinity, defined by the asymptotic relations, . uniformly in ..
20#
發(fā)表于 2025-3-25 02:26:30 | 只看該作者
https://doi.org/10.1007/978-3-662-67677-6Let us consider a solution . of the equation . satisfying the initial conditions . .. Here the underlying interval is supposed to be symmetric and . is a complex-valued function belonging to ..(?., .). The following important result is well known.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤冈县| 肃宁县| 嘉义县| 汉阴县| 广元市| 吐鲁番市| 望奎县| 始兴县| 油尖旺区| 砀山县| 宁德市| 富裕县| 伊宁县| 泽州县| 清徐县| 蒲江县| 湄潭县| 肥东县| 社会| 新干县| 奈曼旗| 青铜峡市| 大姚县| 东光县| 龙陵县| 鹤岗市| 靖安县| 大方县| 长顺县| 高邮市| 泸州市| 德庆县| 阳东县| 五峰| 自治县| 广灵县| 玛纳斯县| 汶上县| 明溪县| 丹阳市| 油尖旺区|