找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; Theory and Algorithm István Gaál Book 2019Latest edition Springer Nature Switzerland AG 201

[復(fù)制鏈接]
樓主: Magnanimous
31#
發(fā)表于 2025-3-27 00:38:11 | 只看該作者
Geoffrey Edwards,Marie-Josée Fortinbles. The resolution of such an equation can yield a difficult problem. The main goal of this chapter is to point out that in the quartic case the index form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Sect. .). This means that in fact the index form equatio
32#
發(fā)表于 2025-3-27 04:03:01 | 只看該作者
Marie-Josée Fortin,Geoffrey Edwards quintic fields. In the most interesting case, for totally real quintic fields with Galois group .., .., or .., this computation takes several hours, contrary to the cubic and quartic cases, where to solve the index form equation was the matter of seconds or at most some minutes. The general method
33#
發(fā)表于 2025-3-27 09:00:42 | 只看該作者
Probabilistic Projection in Planningds to calculate generators of power integral bases in case the sextic field admits some additional property, making the index form equation easier. We have efficient algorithms for sextic fields having quadratic or cubic subfields (see Sects. 11.2 and 11.3). Investigating the structure of the index
34#
發(fā)表于 2025-3-27 10:47:17 | 只看該作者
35#
發(fā)表于 2025-3-27 17:07:04 | 只看該作者
36#
發(fā)表于 2025-3-27 20:49:14 | 只看該作者
Roberto Casati,Achille C. Varzi in the extension field by using the relative power integral bases..In Sect. . we describe a relative analogue of the method of Sect. . to calculate relative power integral bases in relative quartic extensions. Applying this method in Sect. . we consider power integral bases in octic fields with qua
37#
發(fā)表于 2025-3-27 22:49:32 | 只看該作者
38#
發(fā)表于 2025-3-28 03:22:17 | 只看該作者
https://doi.org/10.1007/978-3-030-23865-0Algebraic Number Theory; Algorithmic Analysis; number theory; Diophantine equation; Diophantine equation
39#
發(fā)表于 2025-3-28 06:27:31 | 只看該作者
40#
發(fā)表于 2025-3-28 12:09:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳高县| 内丘县| 偃师市| 尼玛县| 贡山| 称多县| 崇阳县| 涪陵区| 大埔区| 廊坊市| 璧山县| 江达县| 蓝田县| 中阳县| 南靖县| 安平县| 兴安县| 屏南县| 正镶白旗| 桦甸市| 九龙城区| 桑植县| 三门县| 台中市| 喀喇沁旗| 泾阳县| 沿河| 荆门市| 四子王旗| 德保县| 吴桥县| 孝昌县| 桂平市| 西林县| 永平县| 巴楚县| 和硕县| 柯坪县| 娱乐| 邮箱| 奎屯市|